A REVISED VERSION OF GRAPHIC NORMATIVE ANALYSIS PROGRAM (GNAP) WITH EXAMPLES OF PETROLOGIC PROBLEM SOLVING

bу

J.S. Stuckless and G. VanTrump, Jr.
U.S. GEOLOGICAL SURVEY

OPEN-FILE REPORT 79-1237 1979

CONTENTS

PAGE
ABSTRACT
INTRODUCTION
PROGRAM DESCRIPTION
CIPW COMPUTATIONS
PROGRAM USE
TITLE CARD
FLAG COMMANDS
PPS-NØPPS
WATER-NØWATER
CANCRINITE-NØCANCRINITE
BARITE-NØBARITE and KSPAR -NØKSPAR
SET FLAGS
MODIFIED INPUT COMMANDS
MØDIFY FØRMAT
ØXIDES
ANALYSIS CARDS
OUTPUT COMMANDS
Define
PLØT and PLØT(R)
TERNARY
CØNVERT VALUES
PRINT
RECALCULATE NØRMS
DEVICE
SCALE command and user scaling with dummy cards 32

SUMMARY
CLEAR
ERROR MESSAGES
EXAMPLES
GNAP PRØBLEM 1
GNAP PRØBLEM 2
REFERENCES
APPENDIX I-SAMPLE PROBLEMS
APPENDIX II-PROGRAM LISTING

ABSTRACT

A revised version of Graphic Normative Analysis Program (GNAP) has been developed to allow maximum flexibility in the evaluation of chemical data by the occasional computer user. GNAP calculates CIPW norms, Thornton and Tuttle's differentiation index, Barth's cations, Niggli values and values for variables defined by the user. Calculated values can be displayed graphically in X-Y plots or ternary diagrams. Plotting can be done on a line printer or Calcomp plotter with either weight percent or mole percent data.

Modifications in the original program give the user some control over normative calculations for each sample. The number of user-defined variables that can be created from the data has been increased from ten to fifteen. Plotting and calculations can be based on the original data, data adjusted to sum to 100 percent, or data adjusted to sum to 100 percent without water. Analyses for which norms were previously not computable are now computed with footnotes that show excesses or deficiencies in oxides (or volatiles) not accounted for by the norm. This report contains a listing of the computer program, an explanation of the use of the program, and the two sample problems.

INTRODUCTION

The Graphic Normative Analysis Program (GNAP) written by Roger Bowen (1971) has proved to be an extremely useful petrologic program. It offered comsiderable flexibility to the non-computer specialist and could provide graphic output in publishable form. The revised version of GNAP presented here, provides more flixibility, removes some of the restrictions of the original program, and provides more information to the user. This report also reviews the principles of normative calculations particularly as they apply to some special situations.

The CIPW norm was originally introduced as the basis of classificiation and nomenclature of igneous rocks (Cross and others, 1902). The proposed taxonomy based on normative analysis is no longer used, but the normative minerals are still used by petrologists to charcterize rocks or suites of rocks (e.g. Irvine and Baragar, 1971), and the molecular approach to the calculations has formed the basis for other methods of petrologic characterizations (e.g. Niggli, 1920).

The revised version of GNAP provides a more publishable form of output and a larger degree of user control, particularly in the calculation of the norm. User controlled flags are available that allow elements to be combined in alternate forms (such as those suggested by Washington, 1917) for samples with an unusual mineralogy. Also the complete original analysis can be printed with calculations made on a water-free basis. The original analysis was important to Washington (1917) and is still important to most chemists inasmuch as the analytical sum is an indication of the accuracy and completeness of the analysis.

As a note of historical interest, Washington (1917) stated that with practice and writing down as few results as possible, one can do an average normative calculation in five minutes. He points out that ten minutes may be required for silica-deficient rocks and 15 minutes for the most complex samples. The two examples used in this report are made up of 24 samples including several samples in Washington's complex category. The computer time (CPU) needed to do both problems (including plots and other calculations that are not part of the norm) was less than 50 seconds. Additionally, the mathematical precision is far better than that of the hand calculations.

PROGRAM DESCRIPTION

GNAP is composed of main driver, 18 subroutines and the Calcomp—software package. All coding is in standard ANSI Fortran IV with the exception of one subroutine (FILES) and parts of the Calcomp package which are in assembler language.

The functions of the main driver are the scanning of input for recognizable commands and preliminary data manipulation prior to calls to the other subroutines. Executable statements are constructed from the user-supplied input (blanks or spaces are ignored). These statements are then identified and the indicated action if performed by the appropriate subroutine.

Subroutine NØRM uses the exact formulae of Washington (1917) to calculate the CIPW norm. This computation closely parallels the computations that were first developed for the General Rock Norm program except that certain functions (normalization of oxides, Niggli values and Barth's cations) which were optional are now performed every norm calculation. Subroutine NØRM contains two additional entry points; (1) RECALC is used to recalculate a norm from previously stored oxide values; (2) CØNVER is used to convert weight percent data to molecular amounts. NØRM also employs user-supplied flag commands as discussed below.

Subroutine EVAL evaluates all arithmetic expressions, and is a Fortran version of a procedure previously developed by R.W. Bowen of the U.S.G.S. A transition matrix technique is used to parse the expression to be evaluated.

 $[\]underline{1}$ Use of trade names is for descriptive purposes only and does not constitute endorsement by the U.S. Geological Survey.

Using this transition matrix subroutine PARSE creates the Reverse Polish form of the expression, which is then evaluated using a pushdown stack. EVAL has the advantage of not requiring actual comparisons to accomplish the parse, hence execution time is considerable improved over procedures using a less sophisticate technique.

Subroutine SUMPNT is used to create the summary printout. An area of output is constructed according to instructions supplied by the user. After this area has been constructed, the summary is printed.

Subroutine PRNT is used for creation of X-Y plots. A standard grid is determined from the range of values to be plotted as described below. If the Calcomp plotter is specified, calls are made to a Calcomp software package to generate a magnetic tape containing the plotter commands. Otherwise, calls to entries of PLØT2 are made which create a printer plot. Subroutine PLØT2 is used to create printer plots and is a modified version of a subroutine developed at the University of Michigan by P. Smidinger.

Subroutine TRIANG is used for creation of ternary diagrams. If the Calcomp plotter is specified, then calls are made to the Calcomp software package. Otherwise calls are made which create diagrams on the printer.

Subroutine SIDE is used to construct one annotated side of a ternary diagram when the Calcomp plotter has been specified.

The remaining subroutines provide a degree of character manipulation and conversion in Fortran. MOVE is used to move characters from one string to another. CONV, INIT, and FIND convert data from character form to numeric form. INDEX determines the position of a given character in a given string. NOTEQ determines if two strings are equal (i.e., contain the same characters); CLEAR provides for the construction of pages of output prior to printing. FILES is used to open and close data files as necessary; this subroutine is machine-dependent, written for execution on a Honeywell 6880 computer.

CIPW COMPUTATIONS

The CIPW norms produced by revised GNAP are computed according to the rules of Washington (1917) except that excess CO_2 is cast as magnesite and then, if CO_2 is still in excess, as siderite. The resulting normative minerals are reported in weight percent, but the data can be obtained in mole percent by use of the PPS or CONVERT plus SUMMARY command. Some investigators prefer reporting normative mineral mole percents because they more closely approximate modal abundances (Irvine and Baragar, 1971).

The specific methodology and mathematics of CIPW calculations can be found in Washington (1917) or Johannsen (1939), but as these publications are no longer easily available to many users, a summary of the method with modifications used by GNAP, is given here. The oxides used and the normative minerals calculated by the subroutine NØRM and the chemical formulae of the normative minerals are given in table 1.

Table 1 near here.

^{1.} The arithmetic sum of the analyzed elements is adjusted for F and Cl because these are actually combined with some of the cations that are reported in the analysis as oxides. (Usually this adjustment changes the total by only a few tenths of a percent, and this step was omitted from the original GNAP program). No attempt is made to adjust the sum for S because such an adjustment requires assumptions about the analytical methods used for S and FeO; for most analyses the correction would be negligible. For rocks with a high content of S, the effect of this correction should be checked. The sum, corrected for F and Cl is used to normalize the analysis to 100 percent, and the adjusted oxides (and

Table 1.--List of variable names used in GNAP

Oxides and Elements

1.	SiO ₂	12.	Mn0
2.	A1 ₂ 0 ₃	13.	Zr02
3.	Fe ₂ 03 Fe0	14.	co_2
4.	Fe0	15.	$50\bar{3}$
5.	Mg0	16.	C1 T
6.	Ca O	17.	F
7.	Na ₂ 0	18.	S
8.	K ₂ Ō	19.	Cr203
9.	H ₂ 0 (+, -, or	20.	NiŌ
10.	Tio ₂ total)	21.	Ba0
11.	P205		

<u>Minerals</u>

```
20. FA = fayalite (Fe<sub>2</sub>SiO<sub>4</sub>)
21. CS = calcium orthosilicate (Ca<sub>2</sub>SiO<sub>4</sub>)
    Q = quartz (SiO_2)
 2. C = corundum (\bar{A}120_3)
     Z = zircon (ZrSiO_4)
                                                                            MT = magnetite (Fe_30_4)
                                                                     22.
                                                                     23.
                                                                           CM = chromite (FeCr<sub>2</sub>0<sub>4</sub>)
HM = hematite (Fe<sub>2</sub>0<sub>3</sub>)

 OR = orthoclase (KAlSi<sub>3</sub>0<sub>8</sub>)

                                                                     24.
     AB = albite (NaAlSi308)
     AN = anorthite (CaA\tilde{1}_2\tilde{S}i_2O_8)
                                                                     25.
 6.
                                                                            IL = ilmenite (FeTiO<sub>3</sub>)
      LC = leucite (K_2Al_2Si_40_{12})
NE = nepheline (Na_2Al_2Si_20_8)
                                                                            TN = titanite=sphene (CaTiSiO<sub>5</sub>)
 7.
                                                                     26.
                                                                     27.
                                                                            PF = perovskite (CaTiO<sub>3</sub>)
 8.
      KP = kaliophilite (K_2\bar{A}l_2\bar{S}i_2O_8)
 9.
                                                                     28.
                                                                            RU = rutile (TiO_2)
      HL = halite (NaCl)
10.
                                                                     29.
                                                                            AP = apatite (Ca_5F(PO_4)_3)
      TH = thenardite (Na_2SO_4)
11.
                                                                     30.
                                                                            FR = fluorite (CaF_2)
      NC = sodium carbonate (Na<sub>2</sub>CO<sub>3</sub>)
12.
                                                                     31.
                                                                            PR = pyrite (FeS<sub>2</sub>)
      AC = acmite (Na_2Fe_2Si_4O_{12})
13.
                                                                     32.
                                                                            CC = calcite (CaCO_3)
14.
      NS = sodium metasilicate (Na<sub>2</sub>SiO<sub>3</sub>)
                                                                     33。
                                                                            MG = magnesite (MgCO<sub>3</sub>)
      KS = potassium metasilicate (\bar{K}_2SiO_3)
15.
                                                                     34。
                                                                            SD = siderite (FeCO_3)
16.
                                                                     35.
                                                                            DI = diopside (EN+FS+WØ-WØL)
     WO = wollastonite (CaSiO<sub>3</sub>)
17.
                                                                     36.
     EN = enstatite (MgSiO<sub>3</sub>)
                                                                            HY = hypersthene (EN+FS)
    FS = ferrosilite (FeSiO<sub>3</sub>)
18.
                                                                     37.
                                                                            OL = olivine (FO+FA)
      FO = forsterite (Mg_2SiO_4)
19.
```

- elements) are converted to molar amounts by dividing each by its molecular wwight. In the following discussion, oxides should be understood as oxides and elements, and amounts as molar amounts. (Washington (1917) ignored amounts less than .002, but they are used by GNAP).
- 2. The amounts of MnO and NiO are added to FeO, and BaO and SrO are added to CaO. The automatic addition of BaO to CaO can be overridden by the revised version of Gnap, as described below. No standard provision is made for the input of SrO, but it can be accommodated by the use of a series of user defined commands as shown below. The addition of BaO to CaO (or K_2O or Na_2O) has the effect of yielding a low total for the normative minerals relative to the oxide total because the conversion of the calcium-bearing minerals from mole percent (in which they are calculated) to weight percent does not take into account the much heavier barium component of the mineral.
- 3. In the nine steps of rule 3, amounts of minor oxides are combined with amounts of major oxides to form trace minerals. In the earlier version of GNAP, excess of minor constitutents caused termination of the calculation and generation of an error message. The revised version uses as much of the minor constituent as possible and then reports the weight percent excess in an error message. In this case, the normative total is lower than the oxide total. Minor oxides are apportioned as follows:
 - 3a. CaO equal to 3.33 times P_2O_5 is used for apatite.
 - 3b. Na₂O equal to 0.5 times C1 is used for halite.
 - 3c. Equal amounts of Na_2O and SO_3 are combined for thenardite.
 - 3d. FeO equal to 0.5 times S is used for pyrite.
 - 3e. Equal amounts of FeO and Cr_2O_3 are used for chromite.

- 3f. Equal amounts of FeO and ${\rm TiO}_2$ are used for ilmenite. CaO equal to any excess ${\rm TiO}_2$ is provisionally allotted to titanite. (If there is not enough CaO to use up the ${\rm Al}_2{\rm O}_3$ in the anorthite calculations (4d) titanite is not calculated.) Excess ${\rm TiO}_2$ is calculated as rutile.
- 3g. F equal to 2/3 the amount of apatite (3a) is considered to be contained in apatite. Any excess is used with half as much CaO for fluorite.
- 3h. If the rock contains modal cancrinite, equal amounts of $\mathrm{Na}_2\mathrm{O}$ and CO_2 are combined for sodium carbonate. Excess CO_2 is first combined with an equal amount of CaO for calcite. Any excess CO_2 is subsequently combined with equal amounts of MgO for magnesite, and then with FeO for siderite.
- 3i. Equal amounts of SiO_{2} and ZrO are used for zircon.
- 4. Alumina and potash are apportioned as follows:
 - 4a. Equal amounts of K_2O and Al_2O_3 are used for orthoclase.
 - 4b. Excess K₂O is equal to the amount of potassium metasilicate.
 - 4c. Excess Al_20_3 is combined with an equal amount of Na_20 and is equal to the amount of albite.
 - 4d. Excess Al₂O₃ is combined with an equal amount of CaO (including the CaO that had been provisionally assigned to titanite if necessary) to make anorthite.
 - 4e. Any excess $A1_20_3$ is equal to the amount of corundum.
- 5. Sodium oxide and ferric iron are apportioned as follows:
 - 5a. $Fe_{2}O_{3}$ equal to the excess of $Na_{2}O$ is used for acmite.
 - 5b. Any excess Na₂O is equal to the amount of sodium metasilicate.

- 5c. Excess $\mathrm{Fe_20_3}$ and an equal amount of FeO are used for magnetite.
- 5d. Any excess Fe_2O_3 is equal to the amount of hematite.
- 6. The relative proportion of any remaining FeO and MgO are determined.
- 7. Lime, ferrous iron and magnesia are approtioned as follows:
 - 7a. CaO equal to the sum of FeO and MgO is used for diopside.
 - 7b. Excess CaO is equal to the amount of wollastonite.
 - 7c. Excess MgO + FeO is equal to the amount of hyperthene. The proportions of enstatite and ferrosilite are the same as the MgO-FeO proportions determined in (6).
- 8. Silica is adjusted for the minerals calculated in steps 3 thorough 7. If there is a deficiency in silica, the silica-rich minerals are recalculated as silica-poor minerals.
 - 8a. The SiO₂ remaining after (3i) is decreased by the amount of titanite, 4 times the amount of acmite, the amount of sodium metasilicate, the amount of potassium metasilicate, 6 times the amount of orthoclase, 6 times the amount of albite, the amount of wollastonite, twice the amount of anorthite, twice the amount of diopside, and the amount of hypersthene.
 - 8b. Excess SiO_2 is equal to the amount of quartz.
 - 8c. If there is a silica deficiency after (8a), hypersthene is converted to olivine (forsterite and fayalite proportions are as determined in rule (6) and SiO_2 is increased by 1/2 the amount of hypersthene. If this results in a SiO_2 excess, hypersthene is increased (from zero) and olivine is decreased until SiO_2 is equal to zero.

- d. If there is still a silica deficiency titanite is converted to perovskite and silica is increased by the amount of titanite.
- 8e. If there is still a silica deficiency, albite is converted to nepheline and SiO₂ is increased by 3 times the amount of albite. If this results in a silica excess, albite is increased (from zero) and nephiline is decreased until SiO₂ is equal to zero.
- 8f. If there is still a silica deficiency, orthoclase is converted to leucite and SiO_2 is increased by 1/3 the amount of orthoclase. If this results in a silica excess, orthoclase is increased (from zero) and leucite is decreased until SiO_2 equals zero.
- 8g. If there is still a silica deficiency, the clinopyroxenes are converted to calcium orthosilicate and olivine. Wollastonite is converted first then diopside. SiO₂ is increased by twice the amount of clinopyroxene and the clinopyroxene is changed to orthosilicate. If an excess in silica results, clinopyroxene is increased from zero and orthosilicate is decreased until silica equals zero.
- 8h. If there is still a silica deficiency, leucite is converted to kaliophilite and silica is increased by the amount of leucite.

 If a silica excess results, leucite is increased from zero and kaliophilite is decreased until silica equals zero.
- Molecular amounts of minerals are converted to weight percent by multiplying molar amounts by molecular weights.
- 10. The total normative minerals are then calculated and divided into two categories. Salic minerals include quartz, corundum, zircon, orthoclase,

albite, anorthite, leucite, nepheline, kaliophilite, halite, thenardite, and sodium carbonate. All other minerals listed in Table 1 are Femic. In the original version of GNAP, if silica was still deficient after step (8h), an error message was printed out and no output was generated. The revised version of GNAP follows the convention of Washington (1917) and reports silica deficiencies after step (8h) as excesses of MgO and FeO (in weight percent) with normative olivine decreased. This has the effect of yielding a low normative total.

The output of approximate norms and excess oxides provides sets of usable information. The approximate norm allows data from the sample to be evaluated in the same manner as samples for which an accurate norm could be calculated. The excess oxides can then be evaluated in terms of analytical error or the existence of modal minerals that are not considered in the normative calculations. For example, an analysis with a low analytical total (e.g. 98.98%) and a large excess of P_2O_5 beyond that used in the norm (e.g. 0.50%) could result from abundant rare earth phosphates in the rock. Alternatively, an analytical total near 100 percent and an excess of P_2O_5 beyond that used in the norm of 0.01 percent indicates that the norm is accurate within the limits of analytical uncertainty. As a second example, the analysis of a dunite may have an analytical total near 100 percent but contain a large excess of MgO beyond that used in the normative calculation. This could indicate the existence of periclase or brucite in the rock.

The only major difference in the normative calculations by GNAP and the rules proposed by Washington is in the treatment of ${\rm CO_2}$. Washington proposed that ${\rm CO_2}$ be treated three different ways depending on petrographic results: (1) if cancrinite was present, ${\rm CO_2}$ was first used for sodium carbonate and added to the salic component with any excess ${\rm CO_2}$ used for

calcite, (2) if primary calcite was present, CO_2 was calculated as calcite and added to the femic component, and (3) if secondary calcite was present, CO_2 was calculated as calcite, but calcite was not used in either the femic or salic totals. The revised version of GNAP provides for a user-initiated calculation of sodium carbonate which is added to the salic component. After sodium carbonate is calculated, or if this calculation is not requested, CO_2 is assigned to calcite, with excess CO_2 used for magnesite, and if necessary, siderite. These three carbonates are added to the femic total regardless of whether they are primary or secondary.

PROGRAM USE

The input for the revised version of GNAP is much more flexible than that of the original version. GNAP input now includes a series of flag commands that allow the user to control the actual normative calculations. Errors in setting or removing flags can produce an output with errors that may not be readily apparent. For this reason, it is critical that the user provide input in exactly the form necessary to create the desired output.

The general sequence of the imput card is:

- 1. Title Card.
- 2. Flag commands for normative calculations.
- 3. Modified input commands.
- 4. Analysis cards.
- 5. Output commands.

Cards from steps 2 and 3 above affect the data cards that follow them. They can either precede all the data, or be interspersed with the analysis cards at the user's discretion. If they are to be interspersed, it is suggested that a page of output per sample be requested (as described below) so that the output can be checked carefully.

TITLE CARD

A title card is identified by the word TITLE punched in columns 1 through Title cards are the only cards that may contain TITLE in the first five 5. columns. For example, a variable named TITLED would be illegal. All of the remaining spaces (6 through 80) can be used for any alpha-numeric characters, symbols or blanks. If the title card contains: TITLE PRØBLEM I, all pages of output generated after the title card is read will be headed by PRØBLEM I. For this reason, a title card is generally the first card in the deck, but new title cards can be used anywhere. For example, the user may wish to title a specific plot with a particular publication reference. A new title card immediately before the plot command and a different title card immediately after the plot command will accomplish labeling of a single plot. It is generally advisable to annotate any specially-created output. The phrase MØLAR DATA is automatically added to the user's title after a CONVERT VALUES command as discussed below. If no title card is suplied, GRAPHIC NØRMATIVE ANALYSIS PROGRAM is printed at the top of each page.

FLAG COMMANDS

The revised version of GNAP provides pairs of flag commands that can be used to control the calculation and output of normative information. Each flag must operate in one of two modes. Each will automatically start in one mode and remain there until changed by the user. All flag commands must end with a semicolon. They can be given before and after a single data card if necessary. PPS-NØPPS commands

If the command PPS (page per sample) is given, a single page of output is generated for each subsequent analysis. This page of output contains: The sample number, the plotting symbol used for this sample, the original analysis in weight percent, the original total, the original total adjusted for Cl and F, the analysis adjusted to 100 weight percent and mole percent (with or without $\rm H_20$ as discussed below), the normative analysis in mole and weight percent (based on the adjusted sum), the weight percent ratios of $\rm Al_{203}/Sio_{2}$ and $\rm FeO/Fe_{203}$, the Thornton and Tuttle differentiation index, the total, femic and salic normative minerals (if $\rm H_20$ is used, the total will be less than 100%), Barth's cations, and Niggli values.

The default (or normal) mode for the PPS-NØPPS pair is NØPPS. If the PPS command is not given or if the NØPPS is given following a PPS command, single-page output is not generated.

WATER-NOWATER commands

The NØWATER command allows the user to enter H_20 as one of the analyzed oxides (either H_20^+ , H_20^- or the sum of the two; the latter is preferable in most cases because it preserves the original analytical total.), but to ignore H_20 as a variable in all subsequent calculations and graphic output. In the NØWATER mode, the complete analysis and the total (adjusted for F and C1) are shown in the summary output, but all calculations and

plotting are based on a water-free analysis, normalized to 100 percent. Plots and calculations are labeled as based on adjusted oxides. Normative minerals and adjusted oxides summaries are labeled as water-free in the summary table. These labels tell the user that the NØWATER flag is set. The default (or normal) mode for the WATER-NOWATER pair is WATER.

If the NØWATER command is used for only a few samples, and if these samples are followed by a WATER command, the normative calculations for the samples between the NØWATER and WATER commands will be on a water-free basis. There will be no label on the summary table to indicate that a few samples were treated as water-free, but the samples that were treated as water-free will be identified on the page of run conditions and error messages and on the single-page output per sample. In the summary table, the water value for these samples will be blank in the adjusted oxides and their normative totals will be 100 percent. Normative totals for samples with water will be less than 100 percent (the difference being equal to the normalized weight percent water).

Once all of the data cards have been read and the norms hae been calcualted, the effect of the WATER-NOWATER command is to direct the output commands to the original or adjusted oxide data sets. WATER is the default (normal) mode for this command pair. If the NOWATER command is not given, or if the WATER command is given after a NOWATER command, plots and user-defined calculations are based on the original oxides. If the NOWATER command is in operation, the plots and calculations will be based on the adjusted oxides.

CANCRINITE-NØCANCRINITE commands

This pair of commands allows the user to treat ${\rm CO_2}$ according to the method suggested by Washington (1917). The CANCRINITE command should be given for all rock analyses which have cancrinite as a modal constituent. This

causes the normative calculation to add a step to calculate sodium carbonate before any other carbonates are calculated. Sodium carbonate is added to the salic total whereas all other carbonates are added to the femic total.

If the CANCRINITE command is not given or if NØCANCRINITE is given after a CANCRINITE command, the calculation of sodium carbonate is automatically skipped. If only one analyzed sample in a data set contains cancrinite, the data card for that sample can be preceded by a CANCRINITE command, and followed by a NØCANCRINITE command, and sodium carbonate will be calculate for that sample only. A message will note that the sodium carbonate calculation was attempted. The default (normal) mode for the CANCRINITE-NØCANCRINITE pair is NØCANCRINITE.

BARITE-NØBARITE and KSPAR-NØKSPAR commands.

These two pairs of commands allow the user to control the use of barium in the normative calculations. In the default (normal) mode, BaO is added to CaO as suggested by Washington (1917). If a given sample is known to contain barite \underline{and} if SO_3 is given in the analysis, the BARITE command should precede the analysis card. This command adds BaO to Na_2O for the purpose of normative calculations for the next and all subsequent analyses until a NØBARITE card is encountered. This step can be important for rock in which CO_2 is reported, and for which barite is an important trace mineral because otherwise Ca normative minerals are increased and Na normative minerals are decreased (because of the calculation of thenardite). The NØBARITE command returns the program to the default mode and allows the program to look for the KSPAR command. The KSPAR command adds BaO to K_2O for the purpose of normative calculations, and should be used if a high-barium, potassium feldspar or barium feldspar is present in the analyzed rock. This command will not override a BARITE command, and if the latter has been given, a

NØBARITE command must precede the KSPAR command. (Although a BARITE command will override a KSPAR command, it is best to set the flag to NØKSPAR after the last analysis of a barium-bearing-feldspar rock in order to avoid possible complications further on in the data set.) The addition of barium to calcium or potassium is indicated by a note on the run condition and error message page.

SET FLAGS command

The SET FLAGS command returns all flags to their default condition. This command would be used before a RECALCULATE NØRMS command if norms are desired by two different modes of calculation.

MODIFIED INPUT COMMANDS

MØDIFY FØRMAT command

The user may specify an input format different from the standard format indicated in figure 1. The user prescribed format must follow Fortran IV object-time specifications and may use up to three cards per sample. The format is restricted to a form of (4X,....,5X) for each card as discussed in the Analysis card section. The format modification is expressed as:

MØDIFY FØRMAT= $(4X, \dots, 5X)$, NCS=n;

Where the dots represent columns 5 through 75 for each card, and n is the number of cards per sample up to a maximum of 3. If n is not specified, it is assumed to be 1. A maximum of 96 characters can be used to describe the format.

The order in which oxides are read follows the order given in table 1 unless this order is overridden by an DXIDES command.

The following example of MØDIFY FØRMAT is from Bowen (1971). If the user wishes to specify ten oxides per card with each value having 5 digits before the decimal and 2 digits after the decimal, the data would be preceded by:

MODIFY FORMAT = (4x, 10F7.2, 1x, 5x), NCS=3;

note that as with all commands, this one ends with a semicolon. In this modified format, each analysis requires 3 cards. Each of the three cards must start with NRM (or STD) and plotting symbol in columns 1 through 4 and end with the sample identification in columns 75 through 80 (as discussed in the Analysis card section below). Although space is provided for 30 variables, the program will use only the first 21. If during the same run the user wishes to use data cards that are punched in the standard format, these cards would be preceded by:

MØDIFY FØRMAT = (4X, 9F4.2, 3F3.2, F2.2, F4.2, 5F3.2, F2.2, F3.2, 5X), NCS = 1;

FIGURE 1.--Normative Analyses Data Form

Form 9-1651 (Aeril 68)

<u></u>	•						7																							
71 72 73 74 75 76 77 78 79 80		-	4	4	-		-	-	-	_	-	-	-	4	-	-	-	-		_	\dashv	4	-	-	-	-	4	-	-	4
8 7,	<u> </u>	-	4		-	-	_	-	-	-	-	-	-	-	-	-	\dashv	-		4	ᅥ	-	\dashv	-	4	-	-	_	-	-
1-	I DENT		-	-	-	-	-	- 1	-	•	-	-	-	7		+	+	-	-		ㅓ	ㅓ	┪	-	٦	٦		-	-	
76/7		-	-	-	-	_	-	-	-	_		-	-	-	-	-	4	-	-		┪	1	7	-	1	1		•	1	1
15																														
14	8a0		⊢⊢	-	-	_	Ιđ	-	7	_	-		٦	-		7	ㅓ	-	-		7	7	٦		٦		-		_	1
15	~	•	-	_		-		٦	٦	-	7		٦	٦			٦	_	_	٦	٦	7	٦	_						1
72	0																													
1	N io					-								-									\Box							
7	က	-0																											_	
69	[2]	- C-				1								_								_	╛				_		_	
68	ပ																													
67	_			_		-				_	_	_	_	_	_		4	_			4	4	4	_	-		_	_	_	
99.5	s.	•		_		-		-	_	_		_	_	_	_	_	_	_	_		4	4	_	_	-	_	4	_	_	4
9	ļ																													
36	-	-	-	-	-	-	1	-	-	_	-	-	-	-	-	-		-	-	-	-	-	4	-	-	-	-	-	-	-
26	LL	•	-	-	-		-	-	-		-	-	-	-	-	-		-	_	-	┥	4	-	_	-	-	-	-	-	
100	 																					_								
00	 _ -	6		-	-			-	\vdash	-		-	-	-	-	٦	-	-	-		-	4	┪	_	-	٦	-	-	-	1
8	10-	6	٦	_	-	-		-		-		-	-	-	-		4	-	-	-	4	1	┪	_		-	-	-		-
88	1																			\Box										1
57	03	•								_							٦	-		1	7	1	1					٦		1
8	S]									
55	-			_						_]							
354	2-	0		_	-	-	_			_			_	-	_		▏▗▏	_	-	╽╶┧	4	4	4		-	_	_	_	_]
2 5	ၓ ₋	-	-		-	_	-	_	_	_	-	_	-	_	-	-	-	ų	_	-		4	4	_	-	-	-	_	-	
- 2	-																													
0 5	P205 Mn0 Zr02 C02 S03 C1 F S Cr203	$\mid - \mid$	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	4	-	- 4	_	-	_	-	-	-	4
19	72	8	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	4	-	-	4	-	\dashv	_	-	_	-	-	-	
83	0														-								$\neg \dashv$							
15	둘	1 -		_	-	-		-		-	-	-		-	-	-	\vdash	-	-		7	٦	-	_	~	-	-	-		
9	2	•																												
45	20		٦	_		_		1		-	-	_		-	-	_	1	-	-	7		1	. 1	_			-	-	٦	
44	-	•				_	-	-								-		_	-		٦	٦					-	_		
43	2																													
42	Ξ_			_		_				_								_				٠	<u> </u>	_			_	_		
14																														
15	-	-	-	_		_	-	_	-	_	_		_	_	-	_	. 4		_	4	4	4	4	_	_	_	_		-	4
8 3	12-	•	4			-	-	_	-	_	_	_	\dashv	-	_		\dashv		-	-	-		-	-	-	_	-	-	-	-
12	 = -	1 -	-	_	-	-	-	_	-	-	-	-4	-	-	-	-	-	-	-		\dashv	-	4	-	-	-	-	-	-	-
36	 	-																										-		
35	1 -	1 1	-	-	-	-	-	_	-	-	-			-	-	-	-	_	-	-	4	-	4	-	٦	-	-	-	-	4
34	12	0	٦		-	-		-		-	_	-		-	-	-		-	-		1	1	1		_	_	-	-		1
33	¥			_	Ī			-		_							٦				1	1	_ 1	-			-			1
32					1	1		1																						
31	102-	•	4	_		_		_				_								╛							_			
18	8 -		4	_	_	_		_	-	_	_	_		٦		4	4	_	_	4	4	4	4	4	_		_		4	4
B 25	 -						_																							
1/2	-	┨╶┤	4	_	_	-	-	-	-		-	-	-	_	-	-	-	_	-	-	4	4	4	_	-	-	-	-	-	4
16/2	1g-	0	4	7	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	4	\dashv	4	-	-	-	-	-	-	
5,4	10-		\dashv	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-{	┥	+	+	-	-	-	-	-		
24/2	†	\vdash	\dashv																				-							
23	Al 203 Fe203 Fe0 Mg0 Ca0 Na20 K20 H20 T102	ן ן	٦					_		-				_		٦	٦	٦			7	7	7	٦			_		1	1
22	ĮŽ.	6																_]	.]	J			_				
21		\sqcup]									
152	-		4	_	4	_		_	-	_	4	_	-	-	-	_		_	_	4	4	4	4	_	_	_	_			
F	8-	•	-	_	_	-	-	-	-			-		_	-	_	_	_	-		4	-	4	_	_	_	-			4
F	<u>الله</u> -	{ -	4	_		-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	4	4	4	_	-	-	-	-	-	4
9	-	╁─┤					-														-	\dashv						-		
15	m-	1 +	4	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	4	4	4	-	+	-	-	-	+	-
4	122	•	4		-	-	-	-		-	-	_	-	-	-	-	4		-	-	4	4	4	4	-	-	-			4
13	Tu -	1	7		٦	-			1		٦	_		٦	-	1	7				1	٦	†	1		-	-	-		1
12			j																	$\neg \uparrow$	\neg	\dashv								\dashv
E	8	•		.]													7	-	1	1	1	1	1	٦	٦	-	-		1	1
5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\								$[\]$]]]	1				-		7	7
	<u> </u>]								
8			4	-		-		_		_		-		-	_	_	4							_			-			.
6 7	5102	6	4	-	-	_	-	-	4				-	-	-	-	4		-	إ	_	-	4	_	4	4	-		4	4
5 6	S -		4	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	4	4	-	4	-	4	_	_		4	-
_	S	$\mid - \mid$	-				-																							
3 4	Options																			}										
2	1.	\vdash								-																				
	[ခိ																													-1

ØXIDES command

The ØXIDES command is usually used in conjunction with the MØDIFY FØRMAT command. The ØXIDES card must precede all analysis cards to which it refers. The ØXIDES command indicates which oxides are to be read, and in what order. (Note that for the sake of brevity, the volatile elements are included under the term oxides.) If no ØXIDES command is given, the oxides will be read in the order given in table 1. If the order of oxides has been changed, it can be returned to the standard order by:

ØXIDES SIØ2, AL2Ø3, FE2Ø3, FEØ, MGØ, CAØ, NA2Ø, K2Ø, H2Ø, TIØ2, P2Ø5, MNØ, ZRØ2, CØ2, SØ3, CL. F. S, CR2Ø3, NIØ, BAØ;

If any one of the oxide names is incorrectly given, an error message is printed giving a list of acceptable oxide names foillowed by the incorrect oxide name. The run is then terminated.

The ØXIDE command only allows the user to choose which of the 21 acceptable oxides (table 1) will be read and in what order. If the user has Rb, Sr, and Ba data which are to be used in plotting, they must be read in as acceptable oxides, and then defined by their correct names by use of a define command. For example, they may be read in as CR2Ø3, NIØ, and BAØ. A series of commands are needed to instruct the computer to label CR2Ø3 as RB, NIØ as Sr, and BAØ as BA (see example below).

ANALYSIS CARDS

The analysis cards may be set in a standard format (fig. 1) or in a userprescribed format. The analysis card (or cards if more that on card per sample is used) may contain a maximum of twenty-one variables. The first three columns must contain either NRM or STØ. NRM places all of the original and calculated variables in a data array for future use in printing, plotting, or subsequent data manipulations. STØ bypasses all normative calculations and places only the original data in storage. This command would be used most commonly for setting and evenly divisible line printer scale for X-Y type plots, or to store non-chemical data for future plotting. Only analysis cards may have NRM or STØ in the first three columns, hence a variable named NRML or STORM would be illegal if they started in column 1. Column 4 should contain the character that is to be used in displaying the sample on X-Y and ternary plots. The characters + and - are used to delineate axes and boundaries on plots and should, therefore, be avoided as plotting symbols. The underscore is used to delineate duplicate points, and is therefore a poor choice as a plotting symbol. The user may find that some symbols (such as #, @, and &) which have special meaning for particular machines, may not print. Columns 76-80 should contain the sample identification. Any alphanumeric and symbol combination up to 5 characters in length is permissable. A maximum of 99 samples can be processed as a group.

The identification columns 76-79 can be used for a special purpose. The RECALCULATE NØRMS command uses all values in storage including those entered directly into storage by use of a STØ command. This means that cards used for the purpose of scaling of plots only may generate meaningless norms, and may have their scaling values changed during the recalculation. To avoid this problem, the user can identify cards for which a norm or normalization to 100

percent is not desired by DUMM in columns 76-79. Cards thus identified will be entered into both adjusted and original data sets exactly as coded and will not be used in any normative calculations or normalizations. They will be used for all plotting, printing and calculating commands. Cards for which data are to be stored for later normative calculations are identified by STØ in columns 1 to 3, and an identifications other than DUMM in columns 76-79.

OUTPUT COMMANDS

The revised version of GNAP used the same ten output commands as the original version. The discussion of these commands is based on the description by Bowen (1971).

Expressions are basic to all the output commands. These are rules by which the computer obtains and uses values. Expressions are composed of variable names, arithmetic operators, constants, and the grouping symbols the left and right parenthesis. Expressions must by syntactically and semantically correct in the Fortran sense. Thus, each left parenthesis must have a matching right parenthesis. No two arithmetic operators can be used immediately adjacent to one another. All variable names must be known to the computer before evaluation of the expression is requested. For example, the computer cannot be instructed to multiple A times 2 and then told that A is silica. Reversing the order of these two instructions make the operation permissible.

Variable names may be any of the alphanumeric combinations associated with values calculated in the norm subroutine (tables 1 and 2). Note that Niggli values, Barth's cations, and Thornton and Tuttle's differentiation index cannot be addressed by their standard abbreviations except for the purpose of

a summary printout. Up to fifteen additional variable names can be provided by user-defined commands as discussed below. Variable names must start with a letter.

Table 2 near here

The four arithmetic operators are:

(1) division (e.g. AL2Ø3/SiØ2, (2) multiplication (e.g. .8998* FE2Ø3), (3) subtraction (e.g. SIØ2-40), and (4) addition (e.g. CAØ + BAØ). These operators are listed in the order of the priority. Multiplication and division are performed before subtraction and addition. Operations of equal priority are performed left to right. The order of operations is changed by the use of parentheses such that operations within parentheses are done first. Hence, if variable A=6/3*2, A is equal to 4, but if A=6/(3*2), A is equal to 1.

Constants are decimal numbers with or without a decimal point. They must be less than eight characters in length including the decimal point as a character. For example, the half-life for 238 U= 4468300000 is not a usable constant because it contains 10 characters, but 4468300*100 is usable because it contains only 7 characters.

Define command

The define command is used to create new variable names (up to a maximum of 15) or to redefine the basic names in tables 1 and 2. The define command only operates on data that are in storage. Therefore, all define command cards must be placed after the analysis cards for which they are to be used. The define command takes the form:

Variable name=expression:

Table 2.--Variable names for partitioning of normative clinopyroxene, orthopyroxene, and olivine

DI = diapside(Ca(Fe,Mg)(SiO₃)₂)

DIWØ - calcium component of diopside

DIEN - magnesium component of diopside

DIFS - iron component of diopside

WØL - excess calcium clinopyroxene beyond that needed for diopside

 $HY = hypersthene (Mg, Fe)SiO_3$

HYEN = magnesium component of hypersthene

HYFS = iron component of hypersthene

 $\emptyset L = olivine (Fe,Mg)_2SiO_4$

ØLFØ = magnesium component of olivine

ØLFA = iron component of olivine

Note: Results are expressed as either weight percent of mole percent of the total norm and not as percent of the mineral class. e.g. TØTALFE= .77732*(FEØ+ .8998*FE2Ø3);

In this example, total metallic iron (for which the variable name is TÓTALFE) is defined as the converted oxides of iron. This is calculated by first calculating all the iron oxide as FeO (within the parentheses) and the multiplying the FeO by a conversion factor. An alternate way to define the same variable would be:

TØTALFE= .77732*FEØ + .69943*FE2Ø3;

Note that in both examples an arithmetic operator is between the constant and variable name for each iron oxide. (The expression .8998FE2Ø3 is meaningless). Also note that both commands end with a semicolon. The number of characters to the left of the equal sign must be eight or less. No operators can be used to the left of the equal sign (e.g. +, -, *, /, ()). The number of characters to the right of the equal sign must be forty or less. If a longer expression is necessary, it must be done in steps (e.g. X= part of the expression; variable name=X + the rest of the expression). Each define command is printed when it is executed. Numbers printed for user-defined variables in the summary table are limited to the range 999.999 to 000.001. Larger numbers are printed as ******** and smaller as 0.000. PLØT AND PLØT(R) commands

The command PLØT and PLØT(R) are used to generate X-Y plots on either the line printer or Calcomp plotter(as described under the DEVICE command). These commands take the form:

PLØT expression 1, expression 2;

or

PLØT(R) expression 1, expression 2;

where expression 1 and expression 2 are valid arithmetic expressions as discussed above, separated by commas and followed by a semicolon. For example:

PLØT SIØ2, AL2Ø3;

instructs the computer to construct an X-Y plot with silica on the abscissa increasing from left to right, and alumina on the ordinate increasing bottom to top. A command of PLØT(R) A, B; instructs the computer to create an X-Y plot with the abscissa values increasing from right to left and ordinate values increasing from bottom to top. The computer uses all values in storage at the time the command is given including those for which no plotting symbol is given. Although the latter will not print, they will be used to determine the minimum and maximum values for abscissa and ordinate. They may show as an underscore of a data point that has the same value or as a blank space in the axis marking. It should be noted that unless otherwise specified (e.g. by a define or CONVERT or NOWATER command as discussed above), the oxide values used will be the weight percent values in the unadjusted input data set and the normative minerals will be in weight percent. Plots that follow a CÓNVERT command will be based on adjusted mole percent data set. Plots that follow a NØWATER command will be labeled as based on adjusted oxides. These will be normalized to 100 percent and water-free if the NÓWATER command preceded the Duplicate data points are indicated by an underscore.

One special plot command is available. This command takes the form: PLØT HARKER;

This command instructs the computer to create a series of X-Y plots with silica on the abscissa and all other oxides with non-zero values on the ordinate.

TERNARY command

The ternary command instructs the computer to construct a ternary diagram for either lineprinter or Calcomp output. This command takes the form:

TERNARY expression 1, expression 2, expression 3; where the expressions are valid as described above, separated by commas, and followed by a semicolon. For ternary plots, all expressions must be equal to or greater than zero; if the computer encounters an expression that is less than zero, it will set it equal to zero. If all expressions are zero for a particular sample, the point is plotted in the lower left apex. Expression 1 describes the upper apex; expression 2 describes the lower left apex; and expression 3 describes the lower right apex. For example:

TERNARY Q, AB, OR;

instructs the computer to construct the familiar granite system diagram of Tuttle and Bowen (1958).

The ternary command uses all values in storage, but plots a blank space if no plotting symbol is given. The command also generates a printout of values for the three expressions normalized to 100 percent on the page that precedes the plot, including those values which are plotted as a space. A list of duplicate data points is also printed. These points are indicated by an underscore on the diagram. It should be noted that the ternary plot generated by the line printer is not exactly accurate. Also note that the original and adjusted data sets produce equivalent ternary diagrams because of the normalization step taken in calculating ternary proportions.

CØNVERT VALUES command

The CØNVERT VALUES command changes all of the weight percent values of the variables listed in table 1 and 2 to mole percent. It is important to note that user-defined variables are not automatically converted to mole percent. Also, only one CØNVERT VALUES command can be used in each data analysis because the command only causes division of stored values my molecular weights. With the exception of user-defined variables, values which do not

convert will not print if requested by a summary command. For example, no constant exists that changes total weight to total moles. Hence, summaries after a CØNVERT VALUES command have no totals. If the user wishes to use his defined variables in mole percent, he must redefine them by use of a define command that contains the appropriate conversion factors. For example, if the user defined a variable FEØT to include all the iron as FeO and then converted values by use of a CØNVERT VALUES command, FEØT would still be in weight percent.

FEØT could be converted to mole percent by either

FEØT = FEØT * 0.0139086;

or

FEØT = FEØ +2.0 *FE2Ø3;

PRINT command

The PRINT command instructs the computer to evaluate and print one or more expressions. This command takes the form:

PRINT expression 1, expression 2;

where expressions 1 and 2 are valid as described above. There is no limit on the number of expressions that can be printed. Each expression will be printed with the sample number followed by the value. All expressions must be followed by a comma except the last, which must be followed by a semicolon. The PRINT command will use the original oxide values unless otherwise specified. Refer to the discussion of the PLØT command for details of the values used in printing under various flag conditions.

RECALCULATE NORMS command

The RECALCULATE NØRMS command is used to recalculate norms for each sample in storage (except samples identified by DUMM in columns 76-79). This command takes the form:

RECALCULATE NORMS:

This command allows the user to modify the stored data (e.g. by use of a define command) and to then calculate a norm on the basis of the modified data. For example, the user may wish to compare the norms of the original data with those of volatile-free analyses with all iron expressed as ferrous iron. To do this, a summary card would be placed after the analysis cards, followed by a series of define cards that set each volatile equal to zero, a define card to calculate all the iron as FeO, a define card to set Fe_2O_3

equal to zero (this card cannot precede the card that redefines FeO as all the iron recalculated as ferrous iron) and finally, a RECALCULATE NØRMS command. The RECALCULATE NØRMS command cannot be used after a CØNVERT VALUES command, because the norm subroutine requires weight percent data as input, and the weight percent data are destroyed by the CØNVERT VALUES command.

DEVICE command

The DEVICE command is used to specify plotting on either the line printer or Calcomp plotter. If no device is specified, approximate plotting will be done on the line printer. Both line printer and Calcomp plotter can be used in a single run. The device command takes the form:

DEVICE = CALCOMP;

or

DEVICE = PRINTER;

This command affects all PLOT and TERNARY commands that follow it in the card deck until a new device command is encountered.

SCALE command and user scaling with dummy cards

The scale command affects only those plots which are to be produced by the Calcomp plotter. Line printer plots have a fixed size which occupies one full page of computer paper. For X-Y plots, the line printer divides the abscissa into 10 equal intervals, and the oridinate into 5 equal intervals on the basis of the minimum and maximum values in storage for each coordinate. This will generally produce axes scales that differ widely from one data set to another, and which may be difficult to interpret within any given data set. For example, if silica in a series of basalts varies from 43.2 to 49.6, and Harker variation diagrams (SiO₂ versus each oxide) are requested by the plot commands, the abscisa will be divided into units of 0.46 weight percent silica. This is an inconvenient unit, and it is unlikely that it could be

used in an overlay comparison with data from other basalt suites. For these reasons, both line printer and Calcomp plots should be scaled by the user.

User scaling is most easily accomplished by use of dummy analysis cards. One, two, or three cards can be used such that the range from minimum to maximum values is divisible by 5. If plotting of adjusted or water-free oxides is anticipated, each dummy card should sum to 100 percent (water-free if need be). The dummy cards should be included with the analysis cards (usually as the last cards of the data set) with STØ in the first three columns, and the fourth column left blank. All dummy cards must have some sort of unique identification in columns 75 through 80, such as DUMM1, DUMM2, etc. The identification DUMM in columns 76 to 79 prevents attempted norm calculation and normalization of the data to 100 percent in the event a RECALCULATE NØRMS command is given.

When the Calcomp plotter is specified, the abscissa is divided into 10 equal units, and ordinate into 8 equal units. Unlike to line printer, the Calcomp scaling subroutines set the interval values equal to 1, 2, 4, 5, or 8×10^{n} , where n is a whole number. As a result of this internal scaling, the Calcomp plots may not start with the actual minimum value and end with the actual maximum value. Nonetheless, dummy cards are advisable to insure consistent scaling among data sets.

In addition to setting ranges that can be incremented by whole numbers, the user may vary the absolute size of Calcomp plots by use of a SCALE command. This command takes the form:

SCALE = n:

where n can be any number from 0.0 to 3.0. If no SCALE command is given, ternary plots will have sides of 230.6mm (9.08 in) in length. This scale allows direct overlay of plots on Keuffel and Esser triangular coordinate

paper (K and E No. 46 4490). Two-dimensional plots will have an abscissa of 254 mm (10 in) and an ordinate of 203.2 mm (8 in) which will overlay on standard 10 divisions per inch graph paper (e.g. K and E No. 46 0702). The scale factor for standard size plots is 1.0. Scale factors between 0.0 and 1.0 decrease the size of the plots, and scale factor between 1.0 and 3.0 increase the size of plots such that 3.0 produces a plot of 762 mm (30 in) maximum width. Scale factors greater than 3.0 exceed the capabilities of the Calcomp plotter, and generate an error message. The SCALE command does not affect the size of lettering and plotting symbols which remain fixed at 3.56 mm (.14 in).

SUMMARY command

This command produces a summary printout for all of the samples in storage. Nine separate groups of numbers can be obtained by us of this command:

- (1) The oxides as originally entered.
- (2) Oxides normalized to 100% (with or without water).
- (3) Normative minerals.
- (4) Partitioning of normative clinopyroxene, orthopyroxene, and olivine.
- (5) Barth's cations.
- (6) Niggli values
- (7) Thornton and Tuttle's differentiation index.
- (8) The ratios $A1_20_3/Si0_2$ and $Fe0/Fe_20_3$
- (9) User-defined values.

The order in which these nine categories are printed, as well as which ones are printed are under user control. Note that this is the only command that can access categories 5 through 8 without the use of a define command. The

summary values will be printed in weight percent unless the summary command has been preceded by a CØNVERT VALUES command. In this case, the summary of values in categories one through four will be in mole percent; but the user-defined variables will still be in weight percent, unless converted through the use of a define command. Values in categories 5 through 8 are not converted, and will not print even if requested. This is also true of the various totals.

The SUMMARY command takes the form:

SUMMARY (list of category keywords);

where the category key words are ØXIDES, ADJUSTED, MINERALS, PARTITIØNS, BARTH, NIGGLI, D.I., RATIØS, and USER. The key words used must be in the order desired by the user, separated by commas, and contained within parentheses. The summary printout will automatically contain the last title, sample numbers, and plotting symbols. Zero values will be left blank. Any variables, except ratios and D.I., for which all values are zero will be omitted from the summary printout. For example, a summary of the normative minerals for 60 samples will generate five pages of printout. If NC(sodium carbonate) is zero for all 60 samples, NC will be omitted from all five pages. However, if NC is non-zero for one sample, it will be printed for all five pages even though it will have no associated values on four of the five pages.

Note that these key words are only understood in the context of a SUMMARY command. If the differentiation index is to be used for plotting it must first be defined as:

D.I. = $Q+\emptyset R+AB+NE+KP+LC$;

CLEAR STØRAGE command

The CLEAR STØRAGE command is used to remove all previously stored values and to reset all flags to their default mode. This command takes the form:

CLEAR STORAGE;

Typically, this command would be used if calculations and plotting for two different data sets were desired. The clear command would be placed after the last command card for the first data set, and would be followed by all the command and analysis cards for the next data set.

ERROR MESSAGES AND PROGRAM CONDITIONS

GNAP is designed to recover from those errors that are due to incorrect or inadequate input. The program is also designed to recover from errors that result from special case data. When an error is detected, an error message is sent to a file that prints as a summary at the end of the run, and the computer resumes scanning the input for commands to execute. In addition to errors, the program keeps track of special conditions that are imposed by the user during the run. These are printed with the error messages at the conclusion of the run. A list of messages and probable causes follows.

- NØ MØRE THAN 99 NØRMS MAY BE STØRED. THE LAST NØRM WILL BE WIPED ØUT.
 More than 99 analysis cards have been processed without an intervening clear command. Only the first 99 analyses are in storage.
- 2. NØ MØRE THAN 15 NAMES MAY BE DEFINED. DEFINITIØN IGNØRED FOR NAME = ().

More than 15 new variable names have been given. Consider redefining variable names.

- 3. PLØT CØMMAND ERRØR ØN ().
 - The two expressions for abscissa and ordinate, respectively, are not separated by a comma.
- 4. TERNARY CØMMAND ERRØR ØN ().

The expression giving the apices of the desired ternary diagram are not separated by commas.

5. SCALE MUST BE PØSITIVE AND LESS THAN ØR EQUAL TO 3.0.

An illegal scale was requested, possibly due to a misplaced decimal point.

6. "DEVICE = CALCOMP" MUST BE SPECIFIED BEFORE SETTING SCALE.

A scale command has been misplaced in the deck. It has no effect on the line printer output and is recognized only by the

7. STATEMENT LENGTH (160) EXCEEDED ØN CARD (). DID YOU FØRGET A SEMICØLØN?

Message is generated most often by a missing semicolon after a command, but may be due to an error in a user-supplied format.

8. FØRMAT CØMMAND ERRØR (MISSING PARENTHESES) IN ().

A user-defined format is lacking a parentheses.

9. ERRØR IN MØDIFY CØMMAND GIVEN AS ().

Calcomp software.

The modify keyword was not followed by format or NCS (number of cards).

10. UNRECØGNIZED CØMMAND GIVEN AS ().

The most common causes for failure to recognize commands are misspellings and errors in user-defined formats.

11. ERRØR IN EXPRESSIØN ().

This message is usually caused by syntax errors such as unmatched parentheses or adjacent arithmetic operators.

12. UNDEFINED NAME ().

This is most often generated by a spelling error, but could be generated by reversing a definition such that the new variable is to the right of the equal sign.

13. FIRST WØRD ILLEGAL IN ().

A key word is misspelled in the summary command or an unrecognized variable has been requested.

14. THE FØLLØWING CØMMAND CØNTAINS EXCESSIVE CHARACTERS. DID YØU FØRGET
A SEMICØLØN

A semicolon is probably missing. The defined variable may not exceed 8 characters, and the definition may not exceed 40.

15. ØXIDE CØMMAND CØNTAINS A NAME WHICH IS NØT IN THE LIST OF ACCEPTABLE ØXIDES. ACCEPTABLE ØXIDES ARE: ().

Error is most likely due to a misspelling or use of an oxide name not used in the program.

16. GRAPHIC NØRMATIVE ANALYSIS PRØGRAM.

This is printed in place of a title if no title is supplied.

17. MØLAR DATA.

This is appended to the users title for all output that follows a convert command.

18. SAMPLE () CONTAINS AN EXCESS OF () WEIGHT PERCENT () BEYOND THAT USED IN NORMATIVE CALCULATIONS.

The blanks contain sample number, amount, and element name, respectively. Elements that can occur in excess are P2Ø5, CL, S, CR2Ø3, F, CØ2, or ZRØ.

19. SAMPLE () CONTAINS TOO LITTLE SIO2 TO COMPUTE A NORM. SIO2

DEFIECIENCY IS EQUIVALENT TO AN EXCESS OF MGO OF () WT% AND AN

EXCESS OF FEO OF () WT%.

The reported norm is only an approximation based on the assumption that too much olivine was calculated.

20. DATA HAVE ALREADY BEEN CØNVERTED TØ MØLES. NØRMS CANNØT BE RECALCULATED FRØM DATA EXPRESSED IN MØLES.

The user converted the data and then asked for a recalculation of the norms.

21. NØ SIØ2 GIVEN FØR HARKER SUITE OF PLØTS.

Silica is zero for all samples, and hence no plots are generated.

22. SAMPLE ()--NA2CØ3 CALCULATIØN ATTEMPTED.

The CANCRINITE flag was set for sample ().

24. SAMPLE () -- BAØ ADDED TO K2Ø.

The KSPAR flag was set for sample ().

25. NØTE: PLØT IS BASED ØN ADJUSTED ØXIDES.

This is printed on plots for which the NØH2Ø flag was set.

26. SAMPLE () -- NØRM CØMPUTED ØN WATER FREE BASIS.

The NØWATER flag was set for sample ().

EXAMPLE

GNAP PRØBLEM 1

The first problem demonstrates the use of all the flag commands and several output commands. Seven pairs of samples are entered such that the sample A computes normally and sample B generates an error message for an excess in a minor constitutent or used a new loop of the program. Two rocks with too little silica for a normative computation are also included. The range of samples in this problem also uses all possible input oxides, and computes all possible output minerals.

The first page of appendix 1 is a printout of all the cards used in the first problem in the order read by the computer. The first card is a title card which causes GNAP PRØBLEM 1 to be printed at the top of each page until the CØNVERT VALUES card is encountered at which point the title is changed to GNAP PRØBLEM 1, MØLAR DATA. The second card is a PPS command which causes a single page per sample to be printed until the NØPPS is encountered (after the third sample).

Three analyses of sample MNØ6 are shown in the first three pages of output. MNØ6A and MNØ6H are identical analyses but MNØ6H is preceded by a NØWATER command. Sample MNØ6B contains more C1 than can be combined with the available Na2Ø and an error statement is printed for this sample on the last page of output for the problem that shows an excess of 0.09 weight percent C1. Note that the increased C1 in MNØ6B removes albite from the norm, increases anorthite and halite relative to MNØ6A, and decreases to total minerals relative to MNØ6A. The difference in the two totals is not 0.09, but (0.09-0.23x0.09). This difference is due to the effect of using C1 instead of oxygen as an anion and can be seen in the totals relative to the adjusted totals of the three samples. The effect of calculating the norm with and

without water can be seen by comparing samples MNQ6A and MNQ6H. The minerals calculated do not change, but the absolute amounts are greater in the water-free analysis.

The remaining 21 samples of problem 1 are preceded by a NØPPS command which suppresses the page per sample output. Results for these and the first 3 samples are shown in the summary table for GNAP PRØBLEM 1 (Appendix 1). Error statements and flag conditions for the last 21 samples appear on the last page of output for problem 1.

The sample pair 1201A and 1201B differs in the amounts of MgO, CaO and ${\rm CO}_2$. Sample 1201B would not have produced a norm in the original version of GNAP, but it does not cause an error statement to be generated in the revised version because siderite is calculated to use up the excess ${\rm CO}_2$ after magnesite has been calculated. Although samples 1201A and 1201B are chemically very similar, there are several differences in the normative mineralogy which could relate to several differences in their trace mineral modes.

Sample 1165 has three similar analyses (A, B, and C). Sample 1165B and 1165C are chemically identical and differ from 1165A in contents of MgO, CaO, and CO_2 . The three norms have several differences. Sample 1165B generates an error message of .13 weight percent excess CO_2 beyond that used in the norm (for calcite, magnesite, and siderite). Sample 1165C is preceded by a CANCRINITE command and all of the CO_2 is used to calculate thenardite. The CANCRINITE command causes sample 1165C to have a very different normative mineralogy from that of sample 1165B (the chemically identical sample). The difference in the normative totals for samples 1165A and 1165B is equal to the excess CO_2 (.09 wt%).

The sample pair 1101A and 1101B differs only in the F content which causes sample 1101B to generate an error message of 0.04 weight percent F in excess, removes anorthite and calcite from the norm, and adds fluorite and magnesite to the norm. The totals differ by (.04 - .04 * .42), which is due to the difference in weight of oxygen and fluorine.

The sample pair 344 A and 344 B differ in their amounts of CaO and $P_2 \emptyset_5$. Sample 344 B generates an error message of .09 weight percent P205 which is equal to the difference in the total of the normative minerals. Although CaO was used up before the calculation of fluorite was attempted, the increase in apatite was sufficient to accommodate the F so no secondary error message was generated for excess F.

The sample pair 278 A and 278 B differs in amounts of FeO and ${\rm Cr_2O_3}$. Sample 278#B generates an error message of .06 weight percent CR2Ø3 which is equal to the difference in the total of the normative minerals. Note that the addition of chromium to the analysis affects the amounts of all the minerals calculated after step 3e of the rules for CIPW calculations.

The sample pair 339 A and 339 B differs only in the S added to the analysis for sample 339 B. The 0.2 weight percent increase of S causes an error message to be generated which shows an excess of S of 0.09 weight percent. This amount is equal to the difference in total weight percent normative mineralogy because no attempt is made to adjust analyses for the differences in 0^{-2} and S^{-1} or S^{-2} or $S0_3^{-2}$ incorrectly reported as S. Note that the addition of S to the analysis makes only a few, generally small differences in the normative mineralogy.

Analysis EC2-9 is an unpublished analysis of an ultramafic nodule (Robert Forbes, written communication, 1973). The sample does not have a computable norm by the original version of GNAP. It contains an excess of P_2O_5 and a

large excess of the olivine molecule which could be interpreted as a large analytical error or the existence of oxide minerals not considered by the normative calculations. However, spinel, which could occur in the norm as any alumino-silicate or corundum, does exist in the sample, and probably explains most of the excess iron and magnesium. The excess P_2O_5 seems large relative to analytical error and may suggest the presence of a phosphate other than apatite.

The next three samples are taken from Washington (1917) and provide a comparison with hand calculated norms. Sample A2.II generates an error message of excess MGØ and FEØ of 1.87 and 0.52 weight percent, respectively. In his calculated norm, Washington reports an excess of 2.31 percent MgO plus FeO. The norm for sample A3III is very similar to that reported by Washington.

The next three samples, Al.I, Al.IS, and Al.IK, demonstrate the changes in normative mineralogy that occur as a result of allocating BaO to CaO, Na_2O , and K_2O (SrO in the original analysis has been added to BaO on the input card for the purpose of the example). Note that all of the normative totals (even with water added) are all less than 100, and that they are all different. The effects of allocating BaO in different ways is small, but could be important in special cases.

The last two samples are included because they have reported ZrO which causes the calculation of zircon and because they have excess Ca-clinopyroxene beyond that needed to equal the Fe and Mg components of diopside. This causes WØL (wollasonite in excess of that used in diopside) to be calculated and printed. The last sample is the only sample in the problem that causes perovskite to be calculated.

The weight percent data are used to create two commonly used ternary diagrams. The first diagram which uses normative quartz, albite and

orthoclase, is commonly used for the classification of quartz-bearing plutonic rocks or to compare the chemical composition of a granite with Tuttle and Bowen's (1958) granite minimum. (It should be noted the Tuttle and Bowen's plot is a phase diagram and that the plot generated by GNAP is not.) The second ternary diagram used the imput oxides to create an AMF diagram. The upper apex is the sum of the total iron as FeO (shown as the user-defined variable FEØT) plus MNØ. If a NØWATER command had been given before the ternary command, the oxides adjusted to 100 percent would have been used. This would have resulted in a slightly different diagram unless FEØT was redefined on the basis of the adjusted oxides. The ternary ratios are shown on both diagrams. In the actual computer output, these are printed on the page that precedes the ternary diagram.

The second half of the problem is carried out using molar data. This is acomplished by use of a CØNVERT VALUES command. FEØT is redefined so that it will be in moles and a new summary is created. Subsequent pages are automatically labeled with the user's title and molar data.

The molar data are used to create two ternary diagrams. The first is based on the molar quantities of nepheline, quartz, albite, hypersthene and olivine (after Irvine and Baragar, 1971) and allows the user to evaluate silica saturation. Lines that divide undersaturated, saturated, and oversaturated fields have been drawn on the computer output. The second ternary plot is based on the molar amounts of $\mathrm{Al}_2\mathrm{O}_3$, total alkalies, and CaO. This allows the user to evaluate the alumina saturation according to the classification of Shand (1951). Lines have been drawn on the output to indicate the fields of peraluminous, metaluminous, and peralkaline. The printout for the ternary ratios has been superimposed on the diagrams by hand.

These two ternary diagrams were chosen to demonstrate the advantage of plotting molar data. The superimposed lines for field boundaries could be shown on weight percent diagrams, but they would have to be calculated by hand, and they would be more difficult to locate on the line printer output. In Shand's classification (1951), peraluminous refers to analyses in which there is more aluminum than that needed to make feldspar. The molar ratio of K_20 or Na_20 to Al_20_3 in alkali feldspar (e.g. $K_20*Al_20_3*6Si0_2$) is 1:1 or mid-point on the left side line. For anorthite ($Ca0*Al_20_3*2Si0_2$) the mid-points also indicate the point at which there is an exact mixture for feldspar. Hence, peraluminous is the field above the line that joins the mid-points.

Problem 1 ends with a SET FLAGS, and a CLEAR command (page 50). This returns the flags to their default modes and clears all of the storage registers so that a new problem can be started.

GNAP PRØBLEM 2

The second problem demonstrates the input of data in a user-defined format, manipulation of user-defined data, X-Y plotting, and plotting with the Calcomp plotter. The samples used in this problem are cogenetic and generate a more typical number of normative minerals than the analyses used in problem 1.

The first card is again a title card (page 50) which labels every page with GNAP PRØBLEM 2. The next card gives the new format, and the following card identifies which of the 21 oxides will be read by the computer and in what order (note that all 21 oxides are not needed). The analytical data are given in the next 12 cards. The number of cards per sample is not specified in the MØDIFY FØRMAT command, and hence, 1 card per sample is assumed.

Immediately after the data and two dummy cards, three new variables are defines (BAPPM, UPPM, and THPPM). These were originally read in as BAØ, NIØ, and CR2Ø3 and were used as such in the normative calculations as can be seen in the first summary table of problem 2 (p. 68-70). Chromite (CM) is reported for all of the samples in spite of the fact that there is no real chromium in any of the samples. In order to obtain the correct norms, BAØ (which was read in as elemental Ba) is converted to BaO by using a define command. NIØ and CR2Ø3 are set equal to zero, and the RECALCULATE NØRMS command is given. The second summary table and the storage registers now contain the true norms and correct chemical data.

BaO was added to CaO (by default) for the normative calculations. The user may wish to have a quick visual check that BaO is varying with CaO rather than K_2O . This is accomplished by plotting BAØ versus K2O. An inverse relationship is expected, and the user may wish to have a positive slope for the plot. Therefore, K_2O is plotted with values increasing to the left by the command: PLOT(R) K2O, BAØ;. Scaling for this and other plots in problem 2 is accomplished through the use of dummy cards. These can be seen in the input data (page 51), but because they generated a separated page of output for the summary tables (only 12 samples are printed per page), printout for these samples has been omitted. Note that their identification is DUMM1 and DUMM2 so that the scaling factors will not be normalized to 100 percent by the recalculated command. A second X-Y plot (Th versus U) is created, this time with values along the abscissa increasing to the right.

The next command sends plotted output to the Calcomp plotter and requests plotting at 3/4 of the normal scale. The requested plot is a ternary plot of the radioelements. Superimposed manually beside the plot is the printout of the ternary ratios. Three lines that describe the commonly accepted averages

for each of the radioelement ratios are superimposed on the diagram. In this example, most of the samples vary greatly from the normal Th/U, U/K and Th/K ratios.

The last series of commands converts the stored data to mole percent.

Next a new variable (PERAL) is defined (which is greater than 1 for peraluminous rocks,) and the values of PERAL are printed. Defining PERAL prior to printing is not necessary. The command:

PRINT AL2Ø3/(NA2Ø+K2Ø+CAØ);

would have generated the same output. Defining the variable first merely places it in storage so that it could be used for purposes other than printing. For example, the user may wish to examine the peraluminous variable as a function of differentiation in an X-Y plot.

REFERENCES

- Bowen, R. W., 1971, Graphic normative analysis program: U.S. Geol. Survey Computer Contribution No. 13, 80 p.
- Cross, C. W., Iddings, J. P., Pirsson, L. V., and Washington, H. S., 1902, Quantitative chemico-mineralogical classification and nomenclature of igneous rocks: Jour. Geol., v. 10, p. 555-690.
- Irvine, T. N., and Baragar, W. R. A., 1971, A guide to the chemical classification of the common volcanic rocks: Can. Jour. of Earth Science, v. 8, p. 523.
- Johannsen, Albert, 1939, A descriptive petrography of the igneous rocks; Vol.

 I Introduction, textures, classifications and glossary: Univ. Chicago

 Press, Chicago, 318 p.
- Niggli, Paul, 1920, Lehrbuch der mineralogie, Berline, 476 p.
- Shand, S. J., 1951, Eruptive rocks; John Wiley, New York, 488 p.
- Tuttle, O. F., and Bowen, N. L., 1958, Origin of granites in the light of experimental studies in the system
 - $NaAlSi_3O_8$ -KAlSi_3O_8-CaAl_Si_2O_8-H_2O: Geol. Soc. America Mem. 74, 153 p.
- Washington, H. S., 1917, Chemical analysis of igneous rocks: U.S. Geol. Survey Prof. Paper 99, 1201 p.

APPENDIX 1

SAMPLE PROBLEMS

```
TITLE GNAP PROBLEM 1
PPS;
                                                                                   MN06A
NRM * 48301480 240 910 8101000 126 012 36306801321
                                                                140
NRM#48301480 240 910 8101000 126 012 36306801321
                                                                153
                                                                                   MN06B
NOWATER:
                                                                                   MNO6H
NRMS48301480 240 910 8101000 126 012 36306801321
                                                                140
WATER:
NOPPS;
                                                            3
NRM * 678 179
               45
                    80
                        61
                             25 96
                                      53 178 23
                                                  5
                                                   2
                                                                   3 0400
                                                                                   1201A
                                                                                   12018
NRM#678 179
               45
                    80
                        30
                             10 96
                                      53
                                         178 23
                                                  5
                                                    2
                                                           60
                                                                   3 0000
               Q
                             24 76
                                                  3 2
                                                                                   1165A
NRM*749 143
                    26
                        20
                                      3
                                         066 13
                                                            2062
                                                                   300
               9
                                76
NRM#749 143
                    26
                        10
                             12
                                     3
                                         066 13
                                                  3 2
                                                           40062
                                                                   300
                                                                                   1165B
CANCRINITE;
               9
                                                                                   1165C
NRMS749 143
                    26
                        10
                             12 76
                                     3
                                         066 13
                                                  3 2
                                                           40052
                                                                   300
NOCANCRINITE;
                                    7
NRM*759 138
               1
                    68
                        11
                             18 3
                                          47 14
                                                 2 5
                                                            3
                                                                   100 00
                                                                                   1101A
NRM#759 138
                                          47 14
                                                  2
                                                    5
                                                            3
                                                                   101500
                                                                                   1101B
               1
                    68
                        11
                             18 3
NRM * 73801330 130
                    04
                        45
                             44
                                240 580 15002100802
                                                           06
                                                                     0.2
                                                                                   344 A
                                                                                   344 3
NRM#73801330 130
                    04
                        45
                             22 240 580
                                         15002102602
                                                           06
                                                                     C 1
                                                                     03
                                                                                   278 A
NRM * 52101660 830
                    80 450 660 370 240
                                         300170 8110
                                                           02
                                                                     03
                                                                            70
                                                                                   278 B
NRM#52101660 830
                    20 450
                           660
                                370 240
                                         300170 8110
                                                           02
                                          85 37 1004
                                                                                   339 A
NRM * 72901350019C
                    3 C
                        36
                           120
                                350 460
                                                           01
                                                                     02
                                          85 37 1004
                                                                                   339 3
NRM#729013500190
                   08
                        36 120
                               360 460
                                                           0.1
                                                                     02
                                                                        20
                                          13 33 1717
NRMx3751 241 133 8954859
                            0.7
                                 0.5
                                     0.5
                                                                                   EC2-9
NRMW3117 625 322 964199 1776 203 251
                                                                                   A2.II
                                         249296169
NRMW3498108 14221331930 43
                                17 542
                                                                                   AJIII
                                         128518
NRMW53701116 310 121 644 346 1671116 341192175 4
                                                             006003 44
                                                                             4
                                                                                 81A1.I
BARITE;
NRMW53701116 318 121 644 346 1671116 341192175 4
                                                                                 81A1.IS
                                                             006003 44
                                                                             4
NOBARITE;
KSPAR:
NRMW53701116 310 121 644 346 1671116 341192175 4
                                                             006003 44
                                                                             7
                                                                                 81A1.IK
NOKSPAR:
NRMA55902050 265 158 87 298 904 426 039076 172 013
                                                                                      25
                                                            1
                                                                     11
                                                                                 1
NRMA488 177 716 18 311 684 642 364 141242 5622 1
                                                                     11
                                                                                      46
                                                           03
FEOT=FEO+0.3998*FE203;
SUMMARY (OXIDES, ADJUSTED, MINERALS, PARTITIONS, USER);
TERNARY Q,AB,OR;
TERNARY FEOT+MNC, NA 20+K2C, MGO;
CONVERT VALUES;
FEOT=FEO+2*FE203;
SUMMARY (OMIDES, ADJUSTED, MINERALS, PARTITIONS, USER);
TERNARY NE+. 6 * AB, Q+. 4 * Ab+. 25 * HY, OL+. 75 * HY;
TERNARY ALZO3, NAZO+KZO, CAO;
SETFLAGS;
CLEAR;
TITLE GNAP PROBLEM 2
MODIFY FORMAT (4x,9F4,2,2F3,2,5F2,2,2F6,6,F4,4,3x,5x);
OXIDES $102,AL203,FE203,FE0,MG0,CA0,NA20,K20,H20,T102,P205,MN0,CL,F,S,C02,
NIO, CR203, BAO;
NRMB670 159
             14
                   26
                       12
                           28
                                40
                                    31
                                          79 72 24 3 5
                                                             2
                                                                 101
                                                                       388 1840
                                                                                       1
NRMB635 152
              18
                  10
                       10
                           24
                                36
                                    44
                                          50 32 140 4
                                                             3
                                                                 227
                                                                       454 1280
                                                                                        2
                            29
NRMB635 155
              10
                   28
                       11
                                41
                                    28
                                          61 64 19 3 7
                                                             3
                                                                  86
                                                                       436 1490
                                                                                        3
                           2.2
                                                                                        4
NRMB709 148
              11
                   72
                        56
                                42
                                    38
                                          66 20 110
                                                      3
                                                             1
                                                                 177
                                                                       292
                                                                            974
                                                                                        5
NRM6718 141
              11
                   11
                        27
                            91 35
                                    50
                                          65 15 10 2 3
                                                             8
                                                                1 2 3
                                                                       643
                                                                             583
                        39
                            74 35
NRMB72 145
               6
                   13
                                    50
                                          70 20
                                                 2 5 20000 2
                                                                11
                                                                       689
                                                                             532
                                                                                        6
                    24
                                                                                        7
NRMB724 142
              12
                        4
                             51 37
                                    5
                                         123 14
                                                  1 2 2 2
                                                            00
                                                                10
                                                                       5 5
                                                                             459
                                                                  96
                        40 22
                                                                                        8
NRNB726 152
               33
                   84
                                42
                                    34
                                          38 19
                                                  5 1 4
                                                                        4671120
                                                                                       9
NRMB72611449
               76 112
                        41
                            75 331 534
                                                  6 3 3 200 1
                                                                 994
                                          58 12
                                                                       613
                                                                            698
                                                                                      10
NRM8728 138
               50
                   88
                        28
                            93 33
                                    52
                                          63 19 0502
                                                             2
                                                                 692
                                                                       685
                                                                             513
```

```
13 97 30
                                  57
                                        51 10 0702
                                                           8
                                                             172
                                                                    234 271
                                                                                    11
NRMB733 135
               27 23
                                                              262 382 388
                                                                                   12
NRMB735 138
               64 52 18
                           73 32
                                  56
                                        56 8 8 2 2
                                                           2
                                                                                 DUMM1
                                   1
STO
                                                                     7
                                                                         2
                                                                                 SMMUG
                                                              20
STO
                                   6
BAPPM = 10000 * BAO;
UPPM=100000*NIO;
THPPM=10000*CR203;
SUMMARY (ADJUSTED, MINERALS, USER);
BA0=1.1168 * BA0;
NIO=0.0;
CR203=0.0;
RECALCULATE NORMS;
SUMMARY (OXIDES, ADJUSTED, MINERALS, D. I., BARTH, NIGGLI, RATIOS, USER);
PLOT(R) K20, BAO;
PLOT UPPM, THPPM;
DEVICE = CALCOMP ;
TERNARY UPPM, THPPM, 0.83 * K20;
DEVICE=PRINTER;
CONVERT VALUES;
PERAL = AL 203/ (NA 20+K20+CA0);
PRINT PERAL;
```

PLOTTING SYMBOL IS *

SAMPLE NO. MNO6A

WT.PCT. OXIDES 203 FE203 FE0 MG0 CA0 .80 2.40 9.10 8.10 10.00	MG0 8.10	CAC		NA20 K20 1.26 0.12	H20 1	T102 P205 0.68 0.13	MNO 2	R02 C02	\$03 0.00 1.	CL 6 6.00	S CR2	03 N 10 00 0 00	BA0 0 • 00
9.10 8.10 10.00 1.26 0.1 .bes= 100.13	8.10 10.00 1.26 0.1 100.13	1.26 0.1	0.1		.63	.68 0.1	-	0.0	00.	0 0,	00.	• 0	_
R F & CL= 99.81	99.8												
NORMALIZED TO 100 PERCENT:	PERCENT												
\$102 AL203 FE203 FE0 48.30 14.80 2.40 9.10 0.8054 0.1454 0.0151 0.1269	AL203 FE203 14.80 2.40 .1454 0.0151 0.	FE203 2.40 .0151 0.	•		MG0 8.10 0.2013	CA0 10.00 0.1787	NA20 1.26 0.0204	K20 0.12 0.0013	H20 3.63 0.2019	7102 0.68 0.0085	P205 AL2 0.13 0.0009	05 AL203/S102 0.13 0.306 0009	
MNO ZROZ CO2 SO3 C.21 0.00 0.00 0.00 0030 0.0000 0.0000	2 K 0 2 C 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.00	\$03 0.00 0.000		CL 1.40 0.0396	0.00	0.00 0.00 0.0000	CR203 0.00 0.3000	N 10 0.00 0.0000	8A0 0.00 0.0000	FEO	FE0/FE203 3.792	
0.1675 0.0000 0.0000 0.0013 10.062 0.000 0.000 0.013	00000 00000 c 00000 c	G	0.0013 0.710		0.0006 0.307	AN 0.1436 39.943	0.0000000000000000000000000000000000000	NE 0.000.0	0.0000 0.0000	HL 0.0198 2.312	0.0000 0.0000	0.0000 0.0000	
AC NS KS W0 .0000 0.0000 0.0320 C.000 0.000 0.000 3.721	.0000 0.0000 C	KS .0000 0.000	W0 0.0320 3.721		EN 0.2013 20.212	FS 0.1063 14.022	60000 0.0000 0.000	FA 0.0000 0.000	0000°0 0°0000	MT 0.0151 3.486	0000°0	0.000.0 0.0000	
1.294 0.000 0.000 0.000 0.000	TN PF .0000 0.0300 0	PF •0300 0•000	RU 0.0000 0.000		0.0009 0.309	6.0000 0.0000	PR 0.0000 0.000	000.0	0000°C	0000°0 0000°0	TOT AL 96.379	SALIC 53.334	FEMIC 43.044
DI DI-WO DI-EN DI-FS .0320 0.0320 0.0210 0.0111 7.286 3.721 2.105 1.460	DI-EN 0.0210 2.105	•			HY 0.2756 30.669	HY-EN 0.1804 18.107	HY-FS 0.0952 12.562	000.0	01-f0 0.0000 0.000	0.0000 0.0000 0.000	WOL 0.0000 0.000		
THORNTON + TUTTLE DIFFERENTIATION INDEX = 11.079	19	19		٠,	•								
SI AL FE+3 FE+2 1 47.66 17.21 1.78 7.51 1	FE+3 FE+2 1.78 7.51	s FE+2 8 7.51	2.E	~ :-	MG 11.91 1	CA NA 10.57 2.	41 0	K H .15 23.89	11 0.50	P.0.11	MN 0.18		
2R C S1 0.00 0.00 0.00	0.00 0.00	s1 0	s1 0.00		CL 2.34	f 83	2 CR .00 0.00	NI 00 0° 00	8 A 0 • 0 0				
AL* FM* C* ALK* 20,57 51,10 25,27 3,06 11	C+ ALK+ 25.27 3.06	ALK*			SI 13.91	RI 1.21 0.	р н .13 28.5	K 55 0.06	MG 0.56	SI. 112.25	1.67		

PLOITING SYMBOL IS #

ORIGINAL WT. PCT. OXIDES

SAMPLE NO. MNO68

8A0 00									FEMIC 2.933					
0 00 •				.02 306	7 92		000 000	000 0000	4					
R2 03 0.00 0				.203/S102 0.306	:E0/FE203		N 0 0	0.000 °0	SALIC 53.381					
s cr				P205 AL 0.13	i.	•	тн 0.0000 0.000	0000°0	TOTAL 96.314	0.000 0.0000 0.000		MN 0.18		92 1.67
F 0.00				1102 0.68 0.0085	0.00.		HL .0203 2.378	MT .0150 3.483	0000°0 0°000°0	0L-FA 0000 0.000		0.11		SI •
CL 1.53				2 2	BA 0 0		0	0		0		20	, 0 C	56 11
\$03 0.00				H20 3.6 0.201	0.000		кР 0.0000 0.000	000°0 0°0000 0°000	0000°C	0.0000 0.0000 0.000		11	80	₩. 0 • 5.
00.00		•		к20 3.12 0.0013	R203 0.00 0.0000		0.3000 0.000	FA 0.0000 0.000	0000.0	0°00°0 0°000 0°000		н 23.89	NI 0.00	, 0 0.06
0 2R02 1 0.00				A20 1.26 .0203 (000				P.R. 0000 0000	- FS 953 C 576		x 0.15	c. 0.00	H 28.55
5 MN(NA20	°0°0		0000°0 0°0000 0°0000	6000°0 0.0000 0.000	0.0	0.09		NA 2.41	. 2 1. 00	p. 0.13
2 P20 8 0.1				CA0 10.00 0.1785	f 0.000 0.0000		AN 0.1440 40.066	FS 0.1062 14.008	6.0000 0.0000	HY-EN 0.1806 18.128			, 00.00	_
0 TIO				60 .10	L .53 432		AB 000 000	EN 1.2011 0.192	A P 009 308	HY 1.2759 10.704		.C.A 10.57	.0	1.21
0 H2 2 3.6				0.283	0.0		0.0	0.2	0.0	0 M	37	м6 11.91	CL 2.56	SI 113.91
NA20 K2				FE0 9.10 0.1268	\$03 0.00 0.000		0.0013 0.710	W0 0.0314 3.649	0.0000 0.000	0.0109 1.432	= 10.93	FE+2 7.51	51 5.00	ALK*
CAO N/				FE203 2.40 0.0150	co2 0.00 0.0000		0000°0 0000°0	0000.0 0.0000	0.0000 0.0000	D1-EN 0.0206 2.064	N INDEX	FE+3	00.0	C* 25.27
м G 0 8.10	100.26	: 99.91	PERCENT	AL203- 14.80 1.1453	ZR02 0.00).0000		00000	0000°0	TN 0000 0.000	DI-WO .0314 3.649	ENTIATIC	AL 17.21	2R 0.00	FK* 51.10
E203 FE0 2.40 9.10	OXIDES=	R F & CL=	E0 TO 100	\$102 48.30 0.8046 0	PINO 0.21 0.030 G		0.1702 0 10.227	AC 0.000.0	11, 1,0085 0	.C314 0 7.146	E DIFFER	SI 47.56		AL* 20.57
\$102 AL203 FE2	SUM OF ORIGINAL	SUM ADJUSTED FOR	OXIDES NORMALIZED TO	CONSTITUENTS PERCENTAGES MOL. AMTS. 0.	CONSTITUENTS PRESCENTAGES MOL. AMIS. 0.	CIPW NORM :	MINERALS MOL. AMIS. 0. PERCENTAGES 10	MIMERALS NOL. AMIS. 0. PERCENTAGES 0	MINEPALS MOL. ARIS. 0. PERCENTAGES 1	MINERALS MOL. AMTS. 0. PERCENTAGES 7	THORNTON + TUTTLE DIFFERENTIATION INDE	BARTHS CATIONS		NIGGLI VALUES

53

PLOTTING SYMBOL IS S

PRIGINAL WT.PCT. OXIDES

BA0 0.00 N 10 0.00 S CR203 0.00 0.00 S03 CL F 0.00 1.40 0.00 00.00 0.00 2R02 0.00 MN0 0.21 P205 0.13 T102 0.68 H20 3.63 K20 0.12 NA20 MG0 CA0 8.10 10.00 FE0 0.10 SIO2 AL203 FF203 48.30 14.80 2.40

SUM OF ORIGINAL OXINES= 100.13

99.81 SUM ABJUSTED FOR F & CL= : (H20 FREF) DXIDES NORMALIZED TO 100 PFRCENT

P205 AL203/S102 0.14 0.306 0.00.0 T102 0.71 н20 ∩.00 CA0 10.40 8.42 FF203 AL 203 15.39 CONSTITUENTS Percentages

0.000 0.0088 8 A O NIO 0.00 0.0000 0.000.0 0.0000 0.0013 CR203 0.00.0 0.9211 0.0000 0.1854 CL 1.46 0.0411 0.2099 FE0 9.46 0.1317 0.0000 S 03 0.00 0.00 0.000 0.0156 2872 0.00 0.0000 0.1509 \$102 \$0.22 \$0.22 0.8358 0.0031 C N N CONSTITUENTS FRCENTAGES MOL. AMTS. ANL. AMTS.

(HZO FREE) MUON MOID

HL 0.0205 2.400 0.0156 3.618 Ξ κΡ 0.000 0.000 0000°0 0°0000 0°000 NE 0.0000 0.000 FA 0.0000 0.000 0.0200 0.300 AN 0.1490 41.450 A9 0.0006 0.319 0R 0.0013 0.737 0.0332 3.862 , 0,00,0 0,000 κς 0.0000 0.000 0.000 0000°0 z 0.1738 0.00.0 ر ۷ MINERALS Mol. Amts. Percentages PERCENTAGES WINERALS MOL. AMTS.

0.0000 0.000 50 0.0300 0.300 FS 0.1103 14.551 F4 0.2089 20.975

FR 0.0000 0.000 0.1872 18.791 HY-FN 0.0010 0.320 8U 0.0000 0.000

PF 0.000 0.000

1N 0.0000 0.000

1.343

PERCENTAGES MINERALS MOL. AMTS.

1.L 0.00%R

FEMIC 44.669

SALIC 0.000 00000.0

55.347

00.016 TOTAL

000°0 0°0000 0°000

000°° 0000°0 0°00

0.00.0

0.0000 0.0000

0.000.0

01-F0 0.0000 0.000

000°0 0°0000 0°000

HY-FS 0.0988 13.336

MN 0.18

0.11

7.1 0.50

0.00

к 0.15

NA 2.41

0.0000 0.000

14 0.000 0.000

0.000 0.0000 0.000

FE0/FE203

0.2860 1.515 0.0115

0.0218

0.0332

0.0332 7.561

MINFRALS MOL. AMIS. PFPCENTAGES

01-10

-

7.184 OILEN

MG 11.91 = 11,498 THORNTON + TUTTLE DIFFERENTIATION INDFX

CL 2.34 FF+2 7.51 0.00 FE+3 1.78 0.00

AL 17.21

S.I 47.66

SARTHS CATIONS

113.91 ALK* 25.27

0.00

51.10

AL* 20.57

VIGGLI VALUES

* *

CR 0.00 00.0 s2 n. 30 P. 0.13 0.00 1.21

MG 0.56 8A 0.00 90.0 N I 0.00

92 1.67 \$1. 112.25

PROBLEM

FEOT

344 B	73.80 13.30 1.30 0.04 0.22 2.40 5.80		99.37	74.27 13.38 0.004 0.022 2.422 5.84 1.51 0.02 0.02 0.02 0.02	37,292 3,094 34,493 20,438
344 A	73.80 13.30 1.30 0.04 0.45 0.44 2.40 5.80		99.41	74.24 13.38 1.31 0.04 0.04 1.51 0.08 0.02 0.02	36.676 2.655 34.477 20.428 1.194
11018	75.90 13.80 0.10 0.10 0.10 3.00 7.00	7-00 0 0-	101.57	74.72 13.59 0.10 0.11 0.11 0.05 0.05 0.05 0.03	30.639 1.282 40.724 24.919
1101A *	75.90 13.80 0.10 0.68 0.11 0.11 7.00		101.49	74.79 13.60 0.10 0.67 0.11 0.18 2.96 6.90 0.02 0.02 0.03	30,381 1,077 40,759 24,940 0,564
11 65 C S	74.90 14.30 0.90 0.26 0.10 0.12 7.60	790	100,36	74.63 0.90 0.10 0.10 0.12 0.33 0.03 0.02 0.62 0.62	35.317 3.075 1.766 55.059 0.398
1165B #	74.90 14.30 0.90 0.26 0.10 0.12 7.60	400	100.36	74.63 0.90 0.26 0.10 0.12 7.57 7.57 7.57 0.03 0.03 0.03	32,372 2,297 1,766 59,809
1165A *	74.90 14.30 0.90 0.26 0.20 0.27 7.60	-00 000	100.20	74.75 0.20 0.26 0.20 0.20 0.30 0.03 0.03	31.752 1.983 1.769 59.904 0.866
12018	67.80 17.90 0.45 0.80 0.30 0.10 9.60	NOO 9 0	100.18	0.45 0.45 0.30 0.30 0.30 0.10 0.05 0.05 0.05 0.00	10.058 1.574 3.126 80.863
1201A *	67.80 17.90 0.45 0.80 0.61 0.61	N00 0 00	100.10	17.88 0.45 0.61 0.25 0.25 0.05 0.05 0.03	8,623 1,405 3,129 80,933 0,463
MND 6 H S	48.30 14.80 2.40 9.10 9.10 10.00	20-7	99.81	50.22 15.39 2.50 9.46 8.42 10.40 1.31 0.71 0.72 0.22	10.441 0.737 0.319 41.450
MN068	48.30 14.80 2.40 9.10 8.10 10.00 1.26	, , , , , , , , , , , , , , , , , , ,	99.91	48.34 2.40 9.11 10.01 1.26 0.68 0.13 1.53	10.227
MNDÓA *	48.30 14.80 2.40 9.10 8.10 10.00 1.26	7	99.81	0xIDES 48.39 14.833 10.02 1.26 1.26 1.26 1.26 1.27 1.26 1.26 1.26 1.26 1.26 1.27 1.26	MINERALS 10.062 0.710 0.307 39.943
SYMBOL	S 102 A L 203 F E 2 0 3 F E 0 0 3 F E 0 0 3 K Z 0 0 K	T102 P205 MN0 ZR02 C02 S03 CL F F	BA0 TOTAL(-0)	ADJUSTED S102 S102 FE CO 3 FE CO 3 FE CO 3 FE CO 6 CA CO CA CO CA	NO RMATIVE Q C C 2 OR AB AN LC NE

__ 55

	0.66.0	1.308 0.128	0.144	0.116	98.400 95.316 3.084	066°0	1.210
	1,127	1.308 0.128	0.144 0.191 0.027	0.137	98.491 95.430 3.061	1.127	1.210
0.016	0.202	0.143	0.047	. 0.057	99.513 97.580 1.933	1.214 0.202 1.012	0.770
0.016	0.270	0.143	0.047	190.0	99.539 97.737 1.802	1.283	0.770
0.049 1.096 0.963	0.248	0.535	0.071		99.344 97.720 1.624	0.248	1. 070
0.049		0.897	0.071	0.143	0.262 99.217 97.390 1.828		1.070
0,040 1,098	265*0	0.525	0.071	0.045	99.343	267.0	1.070
0.049	0.018	0.651	0.118	0.061	0.646 98.226 95.670 2.556	0.018	1.205
0.049	1.518 6.754	0.652	0.118	0.068	98.222 94.603 3.619	2.272 1.578 0.754	1,205
2.400	3.862 20.975 14.551	3.618	0.320		100.016 55.347 44.669	7.561 3.862 2.184 1.515 31.627 18.791 13.036	11.260
2.378	3.649 20.192 14.008	3.483	0.308		96.314 53.381 42.933	7.146 3.649 2.064 1.432 30.704 18.128	.E.S
2,312	3.721 20.212 14.022	3,486	608.0		96.379 53.334 43.044	7.286 3.721 2.105 1.460 30.669 18.107	EFINED VARIABLES 11.260
HL TH NC AC NS	. X 3 m f 5 m	SESEUL	7 A E E E E E E E E E E E E E E E E E E	PR NG	SD TOTAL SALIC FEMIC	DIWO DIWO DIEN HYEN HYEN HYEN HYEN OLFO OLFO	USER DEF FEOT

> 4	78.80 77.70 77.70 8.82 8.42 8.42 13.64 13.64 13.64 13.64 13.64		7.65 7.13 7.15 7.15 7.15 7.15 7.15 7.15 7.15 7.15	0.148 11.434 10.994 8.697 7.952
2 S A	255 205 205 205 205 205 205 205 205 205	113 11 11 10 10 10 10	5.05 2.05 2.05 2.05 5.05 5.05 6.05 6.05 6.05 6.05 6.05 6	0.194 25.274 37.860 2 2.787 21.094 1
A1. IK W	5.1. 5.1. 5.1. 5.1. 5.2. 5.3.	004 08	53.59 11.14 3.09 1.21 6.43 3.45 11.14 11.92 11.75 0.04 0.04	60,803
A1.1S	53.70 3.10 3.10 3.46 11.67 11.92	004 08	53.59 11.14 3:09 1.21 6.43 3.45 11.14 1.92 1.75 0.06 0.06 0.04 0.04	60,803
A1.I	13 13 14 14 14 14 14 14 14 14 14 14 14 14 14	004 08	53 53 54 54 54 54 54 54 54 54 54 54	60.803
A 3 I I I W	34.98 10.80 1.42 21.33 19.30 0.43 0.17 5.42 1.28	100.31	34. 10.77 10.77 10.77 19.26 19.26 10.17 10.17 10.18	3.860 2.127 20.739 0.777 3.114
A 2 . I I	35.17 6.25 7.17 9.02 7.75 7.76 7.75 7.75 7.75 7.75 7.75 7.75	99.62	31.29 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2	0.531 9.341 8.461
E C 2-9 X	37.51 2.41 2.41 48.88 48.59 0.02 0.05 0.05 0.13	. 0	37.41 2.40 1.83 8.93 8.93 4.8.46 0.07 0.05 0.13 0.13	2.268
339 B #	72.90 13.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0, 0,	73.10 13.54 1.91 0.08 1.20 3.61 4.61 0.37 0.02 0.02	31.681 0.711 27.259 30.547 5.170
339 A *	13.50 13.50 13.50 13.50 13.50 13.50 13.50 10.35		73.25 13.55 13.55 0.08 1.21 3.62 4.62 0.10 0.04 0.04	31.745 0.713 27.313 30.609 5.180
278 B #	52.10 86.50 00.30 6.50 6.50 7.70 7.70 1.70 1.70	0.	51.71 16.48 16.48 16.48 16.98 16.69 10.00 10.00	4.090 14.077 31.076 21.438
278 A *	52. 56. 56. 56. 56. 56. 56. 56. 56	0.0	0 0 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	MINERALS 4.094 14.091 31.107 21.459
SYMBOL	\$102 AL203 FE203 FE0 MG0 CA0 NA20 NA20 T102 P205	0 2 2 6 0 0 2 2	ADJUSTED \$102 AL203 FE203 FE203 FE0 MA20 KA20 KA20 HA20 T102 RN02 C02 S03 CL F	NORMATIVE Q C C OR AB AN LC NE KP

57

8.517	.25	1.322 0.123 0.068	98.547 69.226 29.321	15.877 8.517 7.360 7.360	8.243
4.326	3.556	0.404 0.196 0.023	99.547 87.209 12.338	2.517 . 2.175	3.964
0.049 0.106 8.950 0.775 2.201 0.724	4.799 0.059 2.596	4,136 0,582	96.286 60.959 35.327	1.349 0.626 8.532 8.532 4.799	3,999
0.049 0.106 8.950 1.418 1.388 0.724 9.157	4.799 0.059 2.596	4.136 0.582	96.116 60.959 35.157	1.349 0.724 0.626 8.532 8.532 4.799	3.999
0.049 0.106 8.950 0.775 1.388 1.356	4.799 0.059 2.596	4.136	96.085 60.959 35.126	2.491 1.336 1.155 8.003 8.003 4.799 4.799	3.999
	33.579 22.667 2.053 9.808		98.724 30.617 68.107	56.247 33.579 22.667	22.608
	31.601 7.135 23.783 4.686 5.643	4.018	95.200 18.332 76.868	38.737 31.601 7.135	12.537
	79.859 10.687 2.646 0.625	0.126	96.607 2.664 93.943	90.546 79.859 10.687	10.597
668.0	1.905	0.371 0.238 0.023 0.202 0.023	99.028 95.368 3.660	0.899	1.790
0.901	1.909	0.237 0.238 0.023 0.023	99,146 95,560 3,587	0.901	1.790
11.124	0.932 8.238 4.005	0.055	96.986 70.681 26.304	11.124	F.S. 7.668
1.368	8.247 1.891	1.906	97.045 70.752 26.293	2.550 1.368 1.182 9.953 9.953	FINED VARIABLE 8.268
# E K R B N H II	NO E S E D R S		SO TOTAL SALIC FEMIC	DIEN DIEN DIEN HYEN HYFS OL OLFO OLFO	USER DEF

	SYMBOL	*	22 (n *	**	*	₹.	S	*	**	* 3	2 #	æ	*	4	×	3 3	3	: 3	: 3	∢ <		
, C.R	R3	7.	7.	3 10	7	∞,	∞ .	6.	5 . 4	٠. س	۰. د	3 1). 4	7.0	0	0,0		00.0	0.0	40.03		
FOR G.AB.CR	R2	٧.	0,1	~ ~	0	-	9	۲.	٥.	∞ '	٠.		-	Γ.	34.1	00.0	0,0			0	59.97		
RATIOS F	ж Г	0.8	2.	9 0	0.6	3.9	4.4	8.3	1.6	 8	0.0	3 M	, m	7.	5.4	0,	ې د	•			00.00	3 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	,
TERNARY	SAMPLE	9 O N	MN068	200	201	165	165	165	101	0.	5 .	3 C	ο ∞	39	39	-2 J	2.1	7 -	• -				
																					, '		
																			•	٠		;	
																•	+	ı				÷	
												+	. •	•								1	
										ı	• '	•										i	
						,	ı	+														+ 	
				٠ +	•																	<u>:</u>	
	٠, ١	*	,	*I																			
ଫ		ı																				+1	
	·	•		+																		1	
				•	•																	1	
							•	+	,													⋖	
,	<u>د</u>									1	•											,	
11.0	. «	9 6										•	٠,	•								*) I	
9	2	33													•	•	+					•	
101	FALLEN ON	8																•				•	
atto to ton adau		B 27																			+	1.	
	< €	344 6																				' 1 ' 0' + 1 + 1	
00 1 11 5	- 0 4	8 3																					
		1101																					
3W1110 1 700	# E Y	58																				+ 1 = +	
-	— — — — — — — — — — — — — — — — — — —	116 116																					
	S D S	MNO6H																					
u 1	96.0	Z Z																				' i ' a	2

FEOT

344 B	000000000000000000000000000000000000000	00.0	00000000000000000000000000000000000000	00.0	0.621 0.030 0.062 0.039	
344 A	1.23 0.01 0.01 0.01 0.01 0.06 0.08 0.00	00.00	1.24 0.01 0.01 0.01 0.01 0.06 0.08 0.00	00.00	0.610 0.026 0.062 0.039 0.004	
11018	1.26 0.00 0.00 0.00 0.00 0.00 0.00	0.00	00.00	0.00	0.510 0.013 0.073 0.048	000 • 0
1101A *	1.26 0.14 0.00 0.00 0.00 0.00 0.03 0.03	00.00	0.0000000000000000000000000000000000000	00.00	0.506 0.011 0.073 0.048	000 0
1165c S	000000000000000000000000000000000000000	0.00	00.00 00.00 00.00 00.00 00.00 00.00	0.00	0.588 0.030 0.003 0.105	0.00.0
1165B #	1.25 0.14 0.00 0.00 0.00 0.12 0.00 0.00 0.00	0.01	1.24 0.01 0.00 0.00 0.00 0.00 0.00	0.01	0.539 0.023 0.003 0.114	000.0
1165A *	1.25 0.14 0.00 0.00 0.00 0.12 0.00 0.00	0.00	00.00 00.00 00.00 00.00 00.00 00.00	0.00	0.528 0.019 0.003 0.114	000.0
1201B #		0.00	1.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00		0.167 0.015 0.006 0.154	000.0
1201A	0.00 0.00 0.00 0.00 0.00 0.00 0.00	00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00	0.144 0.014 0.006 0.154 0.002	00000
M 0 0 H S S S S S S S S S S S S S S S S S	0.00 0.13 0.13 0.13 0.00 0.00 0.00	0.04	0.84 0.15 0.13 0.13 0.19 0.00 0.00	0.04	0.174	0.021
MN068	0.00 0.13 0.13 0.13 0.13 0.00 0.00 0.00	0.04	0.00 0.13 0.13 0.13 0.13 0.00 0.00 0.00	70.0	0.170	0.020
M N 0 6 A	0.00 0.13 0.13 0.13 0.00 0.00 0.00 0.00	0.04	0x10es 0.081 0.15 0.02 0.13 0.18 0.00 0.00 0.00		0.167 0.001 0.001 0.001	0.020
SYMBOL	\$102 AL 203 FE 203 FE 0 MG0 CA0 NA20 NA20 HZ0 TIG2 MN0	2K02 C02 S03 CL CL F S CR203	ADJUSTED S102 AL 203 AL 203 FE203 FE203 KCC CAO HAZO KCO HZO HZO FE205 MCC MCC MCC MCC MCC MCC MCC MCC MCC MC	2802 C02 S03 CL F F S CR203	NORNATIVE Q Q C Z OR AB AN LC NE	χρ Ή.

	0.010	0.008	0.002	0.001	0.010	0.017
	0.011	0.008	0.002 0.001 0.000	0.001	0.011	0.017
	0.002 0.008	0.001	0,000	0.001	0.010 0.002 0.008	0.011
	0.003	0.001	000.0	0.001	0.010 0.003 0.008	0.011
0.008	0.002	0.002	000000		0.002	0,015
0,008		0.006	000.0	0.001 0.002 0.002		0.015
0.008	0.005	0.002	000.0	000.0	0.005	0.015
	000.0	0.003	00000	0.001 0.007 0.006	000.0	0.017
	0.015	0.003	0.000	0.001	0.021 0.015 0.006	0.017
	0.033 0.209 0.110	0.016	0.061		0.066 0.033 0.022 0.011 0.286 0.187	0.157
	0.031 0.201 0.106	0.009	0.001		0.063 0.031 0.021 0.011 0.276 0.181	ES 0.157
	0.032 0.201 0.106	0.015	0.001		0.064 0.032 0.021 0.011 0.276 0.18C	VARIABL 0.157
F V V V	X 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	I F F G G G G G G G G G G G G G G G G G	- A K P - K	PR CC SD G	DI DIEN DIEN DI EN HYEN HYEN OLFO OLFO	USER DEFINED FEOT

.

.

7 ¥	00000000000000000000000000000000000000	• • •	00000000000000000000000000000000000000	0.001 0.039 0.040 0.031
2 S A	0.0000000000000000000000000000000000000		0.93 0.20 0.02 0.02 0.02 0.03 0.03 0.00 0.00	0.001 0.045 0.072 0.010
A1. IK	0.02 0.02 0.02 0.06 0.03 0.03 0.02 0.02	0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.109
A1. IS	0.02 0.02 0.05 0.06 0.03 0.03 0.02 0.02	0.00 0.00 0.02 0.00	0.89 0.11 0.02 0.03 0.03 0.01 0.00 0.00 0.00 0.00	0.109
A1 . I	00000000000000000000000000000000000000	0.00	00000000000000000000000000000000000000	0.109
A3111	0.58 0.01 0.01 0.00 0.00 0.00 0.00 0.00		0.58 0.11 0.01 0.00 0.00 0.00 0.00 0.00	0.038 0.008 0.048 0.003
A2.11	0.000000000000000000000000000000000000		0.52 0.00 0.00 0.13 0.03 0.03 0.03 0.04 0.04	0.002 0.033 0.033
EC2-9 x	0.02 0.02 0.03 0.00 0.00 0.00 0.00		0.02 0.02 0.01 1.12 1.12 0.00 0.00 0.00	0.022
339 B #	1.21 0.13 0.00 0.01 0.02 0.05 0.05 0.00	0.00	1.22 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.527 0.007 0.049 0.058 0.019
339 A *	1.21 0.01 0.01 0.02 0.05 0.05 0.05	00.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.528 0.007 0.049 0.058 0.019
278 B	0.87 0.00 0.00 0.11 0.00 0.03 0.03 0.02	00.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.068 0.025 0.059 0.077
278 A *	0.87 0.05 0.05 0.01 0.05 0.03 0.02 0.02	00.0	0x10ES 0.86 0.16 0.01 0.11 0.03 0.03 0.01 0.00	MINERALS 0.068 0.025 0.059 0.077
SYMBOL	\$102 AL203 FE203 FE203 MG0 CA0 NA20 H20 TI02 MN0	2R02 503 503 CL F S CR203	ADJUSTED ADJUSTED ALSOS FE203 FE203 FE203 FE20 FE30 FE30 FE30 FE30 FE30 FE30 FE30 FE3	NORNATIVE Q C Z OR AB AN LC NE KP HL

0.073	0.028	0.002	0.147 0.073 0.073 0.002	0.115
0.037	0.015 0.001 0.010	0.001 0.003 0.000	0.043	0.055
0.001 0.019 0.006 0.014 0.006	0.034	0.012	0.012 0.006 0.006 0.085 0.085 0.034	9 50 ° 0
0.001 0.019 0.012 0.009 0.006	0.034	0.012	0.012 0.006 0.006 0.085 0.085	950*0
0.001 0.019 0.006 0.012 0.012	0.034	0.012	0.023 0.012 0.012 0.080 0.080	0.056
	0.239 0.111 0.009		0.350 0.239 0.111	0.315
	0.025 0.035 0.138 0.020	0.012	0.260 0.225 0.035	0.175
	0.568 0.052 0.011	000.0	0.620 0.568 0.052	0.147
600°0	0.012	0.005 0.001 0.000 0.002 0.000	0°00 00°00 00°00	0.025
600.0	0.012	0.003	0.009	0.025
0.111	0.004	0.001	0.111	es 0.107
0.012	0.052	0.00.0	0.024 0.012 0.012 0.099 0.099	D VARIABLES 0.115
E K N A N H	. C 4 0 E E I 5	F D F R R D C O	DI WO DI WO DI FS HYEN HYFS OL OLFA	USER DEFINED FEOT

.

.

FRROR MESSAGES AND RUN CONDITIONS

SAMPLE MNNÁB CONTAINS AN EXCESS OF N.O. WEIGHT PERCENT CL Beyond that Used in Normative Calculations

SAMPLE MNO6H--NORM COMPUTED ON WATER FREE BASES.

SAMPLE 11658 CONTAINS AN EXCESS OF 0.13 WEIGHT PERCENT COS BEYOND THAT USED IN NOPMATIVE CALCULATIONS

SAMPLE 1165C--NA2CO3 CALCULATION ATTEMPTED.

SAMPLE 1101B CONTAINS AN FXCESS OF 0.04 WFIGHT PERCENT F BEYOND THAT USED IN NORMATIVE CALCULATIONS SAMPLE 344 B CONTAINS AN EXCESS OF 0.09 WFIGHT PERCENT P205 BEYOND THAT USED IN NORMATIVE CALCULATIONS SAMPLE 278 B CONTAINS AN EXCESS OF O_moa weight percent cr203 beyond that used in normative calculations

SAMPLE 339 B CONTAINS AN EXCESS OF 0.09 WFIGHT PERCENT S BEYOND THAT USED IN NORMATIVE CALCULATIONS SAMPLE EC2-9 CONTAINS AN FXCESS OF 0.12 WEIGHT PFRCENT P205 BEYOND THAT USED IN NORMATIVE CALCULATIONS SAMPLE EC2-9 CONTAINS TOO LITTLE SIOP TO COMPUTE NORM SIOP OFFICIENCY IS EQUIVALENT TO AM EXCESS OF MGO OF 2.71 WT AND AN FXCESS OF FEO OF 0.45 WT %.

×

SAMPLE A?.II CONTAINS TOD LITTLE SIOZ TO COMPUTE NORM SIOZ DEFICIFNCY IS FOUIVALENT TO AN EXCESS OF MGO OF 1.87 WT % AND AN EXCESS OF FEO OF 0.52 WT %.

SAMPLE A1. IS -- BAO ADDEN TO NAZO.

SAMPLE A1. IK -- BAO ABEN TO KZO.

GNAP PROPLEM 2

SAPPY DEFINED AS 10000+840

UPPM DEFINED AS 10000*NIO

THPPM DEFINED AS 10000*CR203

12 B	74.25	0.6	• 5	• 1	٠. ۲	•	۰	•	•	, 0	9	•	0	0	00.0	0		21.0	•		. 4.5	7.20	.07	.03	• 45	0.332	.93	8		0.153		0.4	. 41	7.29	2,119	Ċ	? ~	. 23	
- 8	73.31	0.2	٣.	٠.,	<u>-</u> د	j.	•	٠,	- 0	, =	•		0	0	0	0.03			2.0	704.0	89	5,39	.89		. 32	3.874	.39	00.		0.190	16	18	24.	4.34	2	00	17.200	3.40	
10 B	73.79	0.5	∞.	~	۰,0	•	٧.	٠.	<u>-</u> c	•	•		0	0	0.	0.05		7 / 5	•	007.1	. 14	8.30	.31		. 70	0.934	. 73	. 01		0.366	.12	0,4	. 33	6.41	~	Č	028-9	. 50	
6 8	72.83	0.7	٦.	4.	۲.	٠,	٠. ·	٠.	•		9		0	0	0	0		4	, n	- '	1.65	7.87	• 29	.03	. 02	1.287	. 10	9		. 22	0.143	. 02	9.37	5.52	3.8	Č		30	
& B			8,	7.	۲,۰	٠.	5 1	ς,	- (•	. 0	•	0	0	0	0.11		0	9 6	ν. γ.	60.0	• 2 4	0.41	•06	66.	726°G	.47	00.		0.361	-	77	. 55	6. 43	3,065	*		. 67	
ک 8	73.04	7.5	• 2	٠,	5,	•	٦, ر	7.	٦.	•	•)	0	0	0.05				3.80	. 80	1.43	5.429	.03	00.		• 43	00.	.91	• 26	0.024	•	8.73	70	2.689	٥	10.000	5.00	
• 9 @		0.6	٦,	٦,	۲.	•	٠,	~•	7	<u>ء</u> د	9	•	C.	0	0	0.05			200	×0.7	, (c)	5.13	. 54	.03	.98	1.665	.87	•01		0.383	.04	707	26	5.2	4.01	0	11.000	8.90	
S 8			٦.	۲,	6.	٠.	·	9	٦,	-, -		•	C	9	0	90.0		•	• • •	7.72	φ α	9.73	. 50	.05	.68	0.903	.61	.01		0.288	• 54	200	31	5.38	3.922	2	12,300	4.30	
7 (, ,	~	٠,	2.	7	∞.	9.	7	•	70.0	•	0			0.10		(۶. د	0.04	2.59	. 53	0.37	.05	. 40	0.031	. 60	00.		0.382	. 26	20.	2.8	5.51	3.761	C		.20	
۳ ۳		.0.	~	۲.	α, (9	~	۰,	۰.	- 0	2 5	•	C			0.15		,	25.	76.0	25.9	.03	3.17	-	.72	3.297	77.	00.		1.211	77.	0.0	30	0.10	9,203	1		60	
5 ³		, .	0	0.	7.	•	7.	5	۸.	-	70.0	•	0			0.13		,	٠ د ت	0.53	6.24	• 45	11.140	.06	٤.		3,	0.007	. 2 2	.61	. 33	- 06	42	3.34	6.073	ES	2.2	. 40	
- a	0X10ES 66.98	7.7	9.	۶,	α, (.	٦.	۲.	۲.	ŸC	•	•		9	Ö	0.18		11 X 1	,	7.44	8.31	97.	2.52	.08	.98	2,481	• 02	00.		1.367	56	70"	10	9.62	9.485	NED VARIAGE	1.01	ງຂ •	1
10e x x	DJUSTED 102	U 70	0	M G O	0	NA 2 0	K 20	0	1102	- 0	O - C	, , ,	707) - -		0 4	•	NCRMA: IVE	.	ٔ ن	OR		88 88		E.	FS	MT	CM	Σ	7.	A.P.	x ()	۲	A.	FEMIC	USER DEFIN	. ε	a.	

GNAP PROBLEM 2

BAO DEFINED AS 1.1168*BAO

NiO DEFINED AS 0.0

CR203 DEFINED AS 0.0

12 B	73.50 13.80 0.64 0.52 0.73 3.20 5.60 0.08 0.08	0.02 0.04 98.99	74.25 13.94 0.65 0.53 0.18 0.02 0.08 0.02 0.02 0.02 1.399 33.430 27.205 3.082 0.033 0.153 0.153 0.153
11	73.30 13.50 0.27 2.30 0.13 0.97 3.00 5.70 0.01 0.02	0.08 0.03 99.98	73.31 13.50 0.27 2.30 0.13 0.05 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09
10 8	72.80 0.5.80 0.50 0.28 3.30 5.20 0.05 0.05	0.02 0.06 9.8.66	73.79 13.99 0.89 0.28 0.28 5.27 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.0
Ф в	7.2.61 10.1.49 10.1.75 10.0.75 10.06 10.03		72.83 14.53 0.76 1.12 0.41 0.64 0.05 0.05 0.03 30.542 3.310 0.03 1.024 1.290 1.024 1.105 0.023 99.369
8 B	72.00 0.33.00 0.33.00 0.40.00 0.40.00 0.13.80 0.13.80 0.13.80	0.06 0.13 100.02	72.59 15.20 0.33 0.40 0.40 0.140 0.140 0.013 0.02 0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.05 0.04 0.05 0.04 0.04
. 2	72.40 14.20 0.24 0.24 0.24 0.25 3.70 1.23 1.23 0.02	0.0	73.04 14.32 1.21 0.24 0.24 0.51 3.73 5.04 1.24 0.02 0.02 0.02 1.434 2.439 0.03 1.005 0.033 1.005
9 8	72.03 14.50 1.30 0.39 0.74 3.50 0.70 0.20 0.02	0.02 0.06 99.09	72.66 14.63 1.31 1.31 1.31 1.31 1.31 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02
8	71.80 17.10 17.10 0.27 0.91 3.50 5.00 0.65 0.10	0.08 0.07 98.37	72.62 14.26 1.11 1.11 1.11 0.27 0.03 0.03 10.74 2.731 30.492 29.731 1.613 0.240 0.288 0.240 0.288 0.240 0.288
7	70.90 14.80 1.10 0.72 0.56 2.20 3.80 0.66 0.20 0.11	0.01 0.11 99.39	71.33 14.89 1.11 0.72 0.56 0.56 0.20 0.01 0.03 1
K. 60	68.50 15.50 1.00 2.80 2.90 2.80 0.61 0.61	0.03 0.17 100.42	68.21 1.00 2.79 1.10 2.79 1.10 6.09 0.04 0.03 0.03 0.03 13.202 13.202 13.202 13.202 13.202 13.202 14.44 1.444 1.444 1.444
2 8	15.20 17.80 17.80 17.80 17.80 17.60 17.40 17.40 17.40 17.40 17.40 17.40 17.40 17.40 17.40	0.03 0.14 99.06	69.15 1.82 1.01 1.01 2.42 3.63 4.44 0.32 0.32 0.14 0.05 26.247 30.451 11.166 0.067 2.514 2.514 0.067 0.067 0.067 0.067
1 B	15.90 15.90 1.40 1.20 2.80 4.00 3.10 0.79 0.24 0.03	0.02 0.21 100.04	NXIDES 66.97 15.89 1.40 2.60 1.20 2.80 4.00 3.79 0.79 0.79 0.79 0.03 0.03 1.42 18.311 33.462 12.564 0.082 2.029 1.367 0.045
SYMBOL	S102 AL203 FE203 FE0 MG0 CA0 CA0 NA20 H20 H20 F102 CL	C02 BAO TOTAL (-0)	ADJUSTED 0 \$102 AL203 FE203 FE203 FE0 MAG0 MAG0 MACO H20 H20 T102 MAO CL F CO2 MIO CR203 BAO CR203 BAO CR203 BAO CR203 BAO CR203 MIO CR203 MIO RAN MIO CR203 MIO CR203 BAO CR203 BAO CR203 BAO CR203 BAO CR203 BAO CR204 MIO CR204 MIO CR205 MIO MIO FFS MIO FFS CCC TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL

69

`				
97.295	92,780	69.82 15.45 0.46 0.25 0.25 8.89 6.79 0.02 0.02 0.03	48.39 7.15 4.75 39.71 4.37.32 0.36 0.20 11.11 0.54 0.22 258.84	0.188 0.813 0.813 388.000 388.200 38.200
94.348	627.68	69 15.02 10.19 1.82 1.82 1.83 1.93 1.03	44.47 13.07 5.88 36.58 409.78 0.42 9.51 9.55 163.44	0.184 8.519 271.000 17.200 23.400
96.415	968.06	69.42 15.51 0.36 0.70 0.70 0.04 0.04 0.02 0.02	47.24 8.98 5.92 37.85 422.93 0.12 12.21 0.51 251.41	0.190 1.760 513.003 6.923 68.503
95.525	90.061	36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47.09 11.83 4.60 36.48 400.43 0.50 0.14 10.67 0.28 245.92	0.200 1.474 698.000 9.940 61.300
96.479	85.136	67.71 0.23 0.65.71 7.59 7.59 7.59 0.04 0.013 0.03	46.75 8.12 12.56 32.57 378.93 0.75 0.11 0.35 0.38 2.30.28 148.65	0.209 2.545 2.545 0.960 4.670
96.044	91.711	68.90 0.86.93 0.057 0.057 0.057 0.01 0.01 0.02	48.02 38.85 38.88 415.44 0.60 23.54 0.02 23.54 159.91	0.196 0.200 459.000 10.000 55.000
95.253 4.004	89.578	68.29 16.21 0.43 1.03 0.75 6.04 6.04 6.04 6.04 0.02 0.03	47.19 11.94 4.51 36.35 397.67 0.05 12.89 0.48 0.27 245.42	0.201 2.167 2.167 532.000 11.000 68.900
95.390	90.107	158.3 0.782 0.783 0.793 0.002 0.002 0.002	46.01 12.00 5.54 36.45 397.59 0.23 12.00 0.23 12.00 0.19	0.196 1.000 583.000 12.300 64.300
95.514	85.036	0.05 0.07 0.07 0.07 0.07 0.07 0.00 0.00 0.00 0.00	43.87 11.39 12.07 32.67 356.62 0.76 0.23 11.07 0.37 230.68	0.209 0.655 0.655 1.770 29.200
90.099	75.819	0.08 17.08 17.09 10.70 10.70 10.70 10.70 10.00 10.	40.02 20.65 13.90 25.24 300.10 2.11 2.11 0.35 8.91 0.31 0.34	0.226 2.800 2.800 4.3.600 43.600
93.344	81.588	64.80 1.28 1.28 1.79 1.41 2.43 3.13 0.02 0.04	41.54 17.07 12.19 29.20 317.68 1.12 0.27 7.73 0.45 0.40 100.88	0.222 0.556 0.556 ***********************************
89.613	75.537	ATIONS 17.62 17.62 0.99 2.04 1.68 7.29 3.72 4.96 0.02 0.03	LUES 40.13 21.60 13.19 286.97 2.32 2.32 0.44 11.29 0.34 0.35 200.31	2 0.237 1.857 NED VARIABL ****** 1.010 38.800
SALIC FEMIC	0.1.	BARTH'S CA SI AL FE+3 FE+2 CA NA NA TI TI P MN C C C C C C C C C C C C C C C C C C	NIGGLI VAL AL * AL * * * * * * * * * * * * * * * *	ALZO3/SIO2 FEO/FE2O3 USER DEFIN UPPM THPPM

DEFINED AS ALZO3/(NAZO+KZO+CAG)

GNAP PROBLEM 2, MOLAR DATA

EVAL	EVALUATION OF PERAL	F PERAL										
or 74	JD	VALUE	10	VALUE	10	VALUE	10	VALUE	10	VALUE	10	VALUE
	-	1.058	2	1.010	~	1.030	4	0.985	2	1.099	•	1.159
	7	1.143	œ	1.042	٥	1.151	10	1.083	11	1.049	12	1.091
٥	OURM1	000.0	0 UMM 2	000.0								
_												

APPENDIX II

PROGRAM LISTING

Main Program

```
1 C
                   * GRAPHICAL NORMATIVE ANALYSIS PROGRAM (GNAP) * *
S C
                               U.S. GEOLOGICAL SURVEY
3 C
                       GEOLOGIC DIVISION, DENVER, COLORADO
4 C
                            WRITTEN BY ROGER W. BOWEN
5 C
                                ON JANUARY 15, 1971
6 C
                        MODIFIED BY GEORGE VANTRUMP, JR.
7 C
                                 ON MARCH 12, 1979
8 C
Q
         EXTERNAL NOTEQ (DESCRIPTORS)
10
         REAL NIGGLI(12, 99)
11
         LOGICAL ERR, STORE, NOTEQ, STAND, DEFINE, PRNTER, SWCC, NORMAL,
12
        1 SWITCH(5), CONVTO
13
         INTEGER SYMBOL, CARD(80), STMT(160), FORMAT(60), BLANK, FARMAT(15),
14
        1 HEADG(92), TFORM(4), SYM(99), RASSYM, DUMMY(15), SPFMT(15), EXTN(12),
15
        2 SEMIC, CNT, PT, BUFFER (1000), ORDER (21), RNAME (2), ASK, NMX (5), NMY (5),
16
        3 IDENT(2,99),NAMES(2,81),DEFTLE(20),PAGE(132,180),COMAND(4,12)
17
         DIMENSION X(101), Y(101), ADJUST(21,99), VALUES(81,99), AREA(14058),
18
        1 TTDI(99), RATIOS(2,99), TOTALS(2,99), TYPES(2,99), BARTHS(21,99)
19
         COMMON /UNITS/ HEADG, TFORM, INPUT, LISTPR, LISTTY, LISTERR
20
         COMMON /FLAGS/ SWITCH, CONVID, STORE, NORMAL, PRNTER
21
         COMMON /BULKSTOR/ PAGE, RASSYM
22
         COMMON /MASK/ TTDI, ADJUST, VALUES, NIGGLI, BARTHS, RATIOS, TOTALS, TYPES
23
         EQUIVALENCE (TTDI(1), AREA(1)), (BUFFER(1), PAGE(1,1))
         DATA PT/BLANK/SEMIC/ASK/SWCC/80/' '/':'/'*'/.false./
24
         DATA DEFTLE/'GRAP', 'HIC ', 'NORM', 'ATIV', 'E AN', 'ALYS', 'IS P',
25
        1 'ROGR', 'AM ',11*' '/
26
         DATA EXTN/1,1,1 1,1M1,101,1L1,1A1,1R1,1 1,1D1,1A1,1T1,1A1/
27
         DATA DUMMY/'(4x9','f4.2',',2f3','.2,f','2.2,','f3.2',',f4
28
50
                     1.2,51,1f3.21,1,f2.1,12,f31,1.2,51,1x) 1,2*1
        1
30
         DATA SPEMT/
31
        1 '(10(','1x,f','6.0)',',10x',',10(','1x,f','6.0)',',10x',
        2 1,10(1,11x,f1,16,0)1,1) 1,3*1
32
33
         DATA NAMES!
34
        1 'SIO2',' ','AL20','3','FE20','3','FE0 ',' ','MG0 ',' ',
        2 'CAO ',' ','NAZO',' ','KZO ',' ','HZO ',' ','TIOZ',' ',
35
        3 'P205', ' ', 'MNO ', ' ', 'ZRO2', ' ', 'CO2 ', ' ', 'SO3 ', ' ',
36
                1,1 1,15
37
                            1,11,15
                                       ',' ','CR20','3','NIO ',' ',
        4
          * CL
                            1,1 1,10
                                                   ',' ','OR
38
        5 'BAO ',' ','Q
                                       1,1 1,17
                1,1 1,14N
                            ',' ','LC
                                       ',' ','NE
                                                   1,1 1,1KP
39
          * AB
        6
                ',' ','TH ',' ','NC
                                       1,1 1,1AC
                                                   ',' ','NS
40
        7 'HL
        8 'KS
                ',' ','WO
                            ',' ','EN
                                       1,1 1,1FS
                                                   1,1 1,1FO
41
               ',' ','CS
                           1,1 1,1MT
42
          * F.A
                                       1,1 1,1CM
                                                   "," ","HM
                1,1 1,1TN
                            1,1 1,1PF
                                       1,1 1,1RU
43
        A IL
                                                   1,1 1,1AP
                1,1 1,1PR
                          1,1 1,100
                                       ',' ','MG
                                                   1,1 1,150
        B FR
44
                ',' ','DIWO',' ','DIEN',' ','DIFS',' ','HY
45
          DI
        C
        D 'HYEN', ' ', 'HYFS', ' ', 'OL ', ' ', 'OLFO', ' ', 'OLFA', ' ',
46
        E 'WOL ',' ',30*' . //
47
48
        DATA COMAND/
           5, WATE', 'R ','
49
        1
                                 ', 7,'NOWA','TER ','
                                 ', 6, 'BARI', 'TE
50
        2
           8, NOBA', RITE',
          7, 'NOKS', 'PAR ', '
                                  ', 5, 'KSPA', 'R
51
                                                                   (75)
        4 12, 'NOCA', 'NCPI', 'NITE', 10, 'CANC', 'RINI', 'TE
52
```

```
53
          5
             5, 140PP1, 15
                                     1, 3,1PPS 1,1
             7, 'SFTF', 'LAGS',
                                     1. 0.1
 54
 55 C--- OPEN FILES * * * * *
 56
           CALL FILES (INPUT, 2)
 57
           CALL FILES (LISTPR.1)
 58
           CALL FILES (LISTTY,3)
 50
           CALL FILES (LISTERR,6)
 60 C--- INITIALIZE CONSTANTS TO DEFAULT VALUES * * *
      110 CNT=0
 61
 62
           NCS=1
 63
           NUM=66
 64
           NOX=21
 65
           CALL MOVE (DUMMY, FARMAT, 15)
 66
           DECODE (DEFTLE, 115) (HF4DG(I), I=1,80)
 67
      115 FORMAT (8041)
 68
           DO 117 [=81,92
 69
      117 HEADG(I)=BLANK
 70
           PRNTER=. TRUE.
 71
           NORMAL = TRUE .
 72
           STORE=.FALSE.
 73
           CONVIDE. FALSE.
 74
           00 118 I=1.5
 75
      118 SWITCH(I)=.FALSE.
 76
           SCALE=1.0
 77
           DO 120 I=1,21
 78
      120 \text{ ORDFR}(I)=I
 79 C--- TERO OUT ALL VALUES CALCULATED BY SUBPOUTINE NORM * * * *
 80 C
             14058 = 99 * (1 + 21 + 81 + 12 + 21 + 2 + 2 + 2) = 99 * 142
 81
           DO 130 I=1,14058
 82
      130 AREA(I)=0.0
 83
      910 DEFINE = .FALSE.
 84
      140 LSTMT=0
      150 PT=PT+1
 85
 86
           IF (PT.LE.80) GO TO 210
 87
           PT=1
 88
           READ (INPUT, 740, END=690) CARD
 89
           IF (NORMAL) GO TO 159
 90
           IF (NOTER (CARD, "LAST", 4)) GO TO 151
 91
           NORMAL = TRUE.
 92
           PT = 80
 93
           60 TO 910
 94
      151 IE(NOTEG(CARD, SYMBOL 1,7)) GO TO 152
 95
           RASSYM=CARD(8)
 96
           PT=RT
           60 TO 910
 97
 98
      152 CMT=CMT+1
 99
           IF(CNT.LE. 99) 50 TO 153
100
           CMT= 99
           WRITE (LISTTY,750)
101
102
           WPITE (LISTERR, 750)
103
      153 SYM(CNT)=PASSYM
104
           GO TO 201
105
      159 IF (NOTE9(CARD, 'TITLE', 5)) 60 TO 170
106
           DO 160 J=1,75
107
      160 \text{ HFADG}(J) = CARD(J+5)
108
           00 165 J=76,92
109
      165 HEADG(J)=BLANK
110
           PT=PD
111
           GO TO 910
      170 IF (NOTEQ(CARD, 'STO', 3)) GO TO 180
112
```

```
113
          STORE = TRUE.
114
          60 TO 190
115
      180 IF (NOTEG(CARD, 'NRM', 3)) GO TO 210
116 C---- NORM PROCESSOR * * * * * * * *
117
      190 CNT=CNT+1
118
          IF (CNT.LE. 99) GO TO 200
119
          CNT= 99
120
          WRITE (LISTTY, 750)
121
          WRITE (LISTERR, 750)
122
      200 \text{ SYM}(CNT) = CARD(4)
123
      201 CALL NORM (CARD, VALUES (1, CNT), FARMAT, NCS, TTDI (CNT), RATIOS (1, CNT),
124
         1 TOTALS(1,CNT), TYPES(1,CNT), PARTHS(1,CNT), NIGGLI(1,CNT),
         2 IDENT(1,CNT),NOX,ORDER,ADJUST(1,CNT),NAMES)
125
126
          PT=80
127
          GO TO 910
128
   C---- RUILD COMMAND * * * *
129
      210 NEYT=CARD(PT)
130
          IF (NEXT.ER.SEMIC) GO TO 230
131
          IF (NEXT_EQ_BLANK) GO TO 150
132
          LSTMT=LSTMT+1
          IF (LSTMT.GT.160) GO TO 220
133
134
          STMT(LSTMT) = NEXT
135
          GO TO 150
136
      220 WRITE (LISTERR, 760) STMT
137
          WRITE (LISTTY, 760) STMT
138
          GO TO 910
139 C--- STATEMENT BUILT. DETERMINE TYPE AND PROCESS * * * * *
      230 IF (NOTEQ(STMT, 'CLEAR', 5)) GO TO 240
140
141 C--- CLEAR STORAGE PROCESSOR * * * * * * *
142
          IF (LSTMT.GT.12) WRITE (LISTERR, 900) (STMT(I), I=1, LSTMT)
143
          CALL FILES (LISTERR,7)
144
          CALL FILES (LISTERR,8)
145
          CALL FILES (LISTERR,6)
          60 TO 110
146
147
      240 IF (NOTEQ(STMT, 'SCALE=',6)) GO TO 270
148 C---- SET THE SCALE FOR THE CALCOMP PLOTTER * * * * * * * * *
149
           IF (LSTMT.GT.14) WRITE (LISTEPR,900) (STMT(I),I=1,LSTMT)
150
          IF (PRNTER) GO TO 260
151
           SCALE=CONV(STMT, 7, LSTMT, 0, ERR)
152
           IF (ERR.OR.SCALE.GT.3.0) GO TO 250
153
          CALL FACTOR (SCALE)
154
          GO TO 910
155
      250 WRITE (LISTERR, 700)
156
          WRITE (LISTTY,700)
          60 TO 910
157
158
      260 WRITE (LISTERR,710)
159
          WRITE (LISTTY,710)
           GO TO 910
160
161
      270 IF (NOTEO(STMT, 'OXIDES', 6)) GO TO 320
162 C---- OXIDES AND ORDER STATEMENT PROCESSOR * * * * * * * * *
           IF (LSTMT.GT.95) WRITE (LISTERP,900) (STMT(I),I=1,LSTMT)
163
          J = 7
164
165
          LSTMT=LSTMT-6
166
          NOX=0
167 C---- DETERMINE LENGTH (I) OF NEXT OXIDE NAME * * *
168
      280 I=INDEX(STMT(J), 1, 1, LSTMT)-1
169
           IF (!_LT.1) I=LSTMT
170
           RNAME (1) = RLANK
171
           RNAME (2) = BLANK
172
           I=MINO(1.5)
```

```
FNCODE(RNAME, 740) (STMT(J+L-1), L=1, T)
173
174 C
          FIND NAME IN LIST OF OXIDES.
175
          DO 300 1=1,21
      300 IF (RNAME(1).EQ.NAMES(1,L).AND.RNAME(2).EQ.NAMES(2,L)) SO TO 310
176
177 (----
          NAME NOT FOUND, PRINT ERROR MESSAGE AND TERMINATE RJN * * * *
          WPITE (LISTERP, 890) (NAMES(1,1), NAMES(2,1), L=1,21), RNAME
178
179
          WRITE (LISTTY, 890) (NAMES (1, I), NAMES (2, I), I=1,21), RNAME
180
          50 TO 690
181 (----
          INCREASE NUMBER OF OXIDES AND STORE ORDER * * *
182
      310 NOX=NOX+1
183
          ORDER (NOX)=1
184
          J=J+I+1
185
          LSTMT=LSTMT-I-1
186
          IF (LSTMT.GT.O) GO TO 280
187
          60 TO 910
188 C---- NORM, H2O, BARITE, KSPAR, CANCRINITE STATEMENT PROCESSOR
189
      320 00 325 I=1,11
190
          IF (NOTER(STMT, COMAND(2,1), COMAND(1,1))) GO TO 325
          IF (LSTMT.GT.COMAND(1,1)+1) WRITE (LISTERR,900)(STMT(1),1=1,LSTMT)
191
192
          IF (I.6T.10) 60 TO 323
193
          J = (I+1)/2
194
          IF (MOD(I,2).EQ.O) SWITCH(J)=.TRUE.
195
          IF (MOD(I,?).NE.O) SWITCH(J)=.FALSE.
196
          60 TO 910.
197
      323 nn 324 J=1.5
198
      324 SWITCH(J)=.FALSE.
199
          60 TO 910
200
      325 CONTINUE
201
          IF (NOTER(STMT, DEVICE 1,6)) SO TO 370
202 C---- PLOTTING DEVICE SELECTION COMMAND PROCESSOR * * * * * * *
203
          IF (LSTMT.GT.14) WRITE (LISTERR, 900) (STMT(I), I=1, LSTMT)
          IF (NOTEQ(STMT(7), 'CALCOMP', 7). AND. NOTEQ(STMT(8), 'CALCOMP', 7)) GO
204
205
         1TO 360
206
          PRNTER=.FALSE.
          IF (SWCC) GO TO 350
207
208
          CALL PLOTS (BUFFER, 1000, 15)
209
          SWCC=.TRUE.
210
      350 CALL PLOT (2.0,1.12,-3)
211
          60 TO 910
212
      360 PRNTER=.TRUE.
213
          GO TO 910
      370 IF (NOTEQ(STMT > SUMMARY( PR)) GO TO 375
214
215 C---- SUMMARY PRINT PROCESSOR * * * * * * * * * * * * *
           IF (LSTMT.GT.74) WRITE (LISTERR,900) (STMT(I),I=1,LSTMT)
216
217
          LSTMT=LSTMT-8
218
          CALL SUMPNT (STMT(9), LSTMT, CNT, IDENT, NAMES, NOX, ORDER, SYM, NUM,
219
         1 SWITCH(1))
220
          GO TO 910
      375 CONTINUE
221
222
          IF (NOTFO(STMT, MODIFY , 6)) GO TO 410
223 C--- MODIFY COMMAND PROCESSOR * * * * *
224
          IF (NOTER(STMT(7), FORMAT', 6)) GO TO 390
225
           00 376 J=1,60
226
      376 FORMAT(J)=BLANK
227
           IF(NOTEQ(STMT(14), 'STATPAC', 7)) GO TO 378
228
           DECODE (SPEMT, 740) FORMAT
          DO 377 I=1,15
553
230
      377 FARMAT(I)=SPFMT(I)
231
          NORMAL = . FALSE .
232
```

RASSYM=ASK

```
233
            NCS=NOX/10
 234
            IF (10 * NCS = NE . NOX) NCS = NCS+1
235
            IF(LSTMT_F9.20) GO TO 910
 236
            I = 14
 237
            J = 30
 238
            CALL MOVE(STMT(22),STMT(7),LSTMT-21)
 230
            LSTMT=LSTMT-15
240
            GO TO 379
 241
       378 IF (INDEX(STMT, ')',-LSTMT).EQ.O) GO TO 380
 242
            I=INDEX(STMT, '(', LSTMT)
 243
            IF (I.EQ.D) GO TO 380
 244
            J=INDFX(STMT, ') ',-LSTMT)
 245
            CALL MOVE (STMT(I), FORMAT, J-I+1)
            IF(J.NF.LSTMT) GO TO 381
 246
 247
            ENCODE (FARMAT, 740) FORMAT
 248
            60 TO 910
 249
       381 CALL MOVE(STMT(J+?),STMT(7),LSTMT-J-1)
 250
            LSTMT=LSTMT-J+5
 251
       379 CALL MOVE (FORMAT, BUFFER, J-I+1)
 252
            CALL MOVE (STMT(11), FORMAT(2), LSTMT-10)
 253
            CALL MOVE (BUFFER, FORMAT(LSTMT-8), J-I+1)
 254
            FORMAT(LSTMT-7+J-I)=FORMAT(LSTMT-8+J-I)
 255
            ENCODE (FARMAT, 740) FORMAT
 256
            IF(.NOT.NORMAL) GO TO 910
 257
            60 TO 390
 258
       380 WRITE (LISTERR, 770) CARD
 259
            WRITE (LISTTY,770) CARD
 260
            60 TO 910
       390 IF (NOTEQ(STMT(?), 'NCS=',4)) GO TO 400
 261
 262
            NCS=CONV(STMT, 11, LSTMT, 0, FRR)+0.1
 263
            IF (ERR) GO TO 400
 264
            60 TO 910
 265
       400 WRITE (LISTERR, 780) CARD
            WRITE (LISTTY, 780) CARD
 266
 267
            NCS=1
 268
            60 TO 910
       410 I=INDEX(STMT, '=', LSTMT)
 269
 270
            IF (I.EQ.O) GO TO 480
 271 C---- DEFINITION PROCESSOR * * *
            LSTM=LSTMT
 272
 273
            J=MINO(8,I-1)
 274
            RMAME (1) = PLANK
 275
            PNAME (2) =BLANK
 276
            FNCODE (RNAME, 740) (STMT(L), L=1,J)
 277
            ISTMT=LSTMT-T
 278
            K = I + 1
. 279
            L=NUM
 280
            DO 430 J=1,NUM
 281
            TF (RNAME(1).EQ.NAMES(1,J).AND.RNAME(2).EQ.NAMES(2,J)) SO TO 450
 282
       430 CONTINUE
            J = MUM + 1
 283
            NUM = NUM + 1
 284
            TF (J.LF.81) GO TO 440
 285
 286
            NUM=R1
            WRITE (LISTERP, 790) RMAME
 287
 288
            WPITE (LISTTY, 790) RNAME
            60 TO 910
 289
       440 NAMES (1, J) = PNAME (1)
 200
 291
            NAMES (2.J) = RNAME (2)
 505
       450 CALL PARSE (STMT(K), LSTMT, NAMES, L, ERR, LISTTY, LISTERR)
```

```
293
          IF (FPR) GO TO 910
294
          DO 460 I=1, CNT
295
      460 VALUES(J,I)=FVAL(VALUES(1,I))
296
          IE (DEFINE) GO TO 470
297
          WRITE (LISTPRITEORM) HEADG
298
          DEFINE = .TRUE.
299
      479 WRITE (LISTPR, 720) RNAME, (STMT(I), I=K, LSTM)
300
          60 TO 140
301
      480 IF (NOTER(STMT, 'RECALC', 6)) GO TO 500
302 C---- NORM RECALCULATION PROCESSOR * * * * * * * * * * * *
          IF (LSTMT_GT_16) WRITE (LISTERR, 900) (STMT(I), I=1, LSTMT)
303
          IF (.NOT.CONVTD) GO TO 495
304
305
          WRITE (LISTPR, 930)
          WRITE (LISTERP 930)
306
          WRITE (LISTTY,930)
307
308
          GO TO 910
309
      495 DO 490 I=1, CNT
310
          SYMBOL=SYM(I)
311
      490 CALL RECALC (VALUES(1,1), IDENT(1,1), SYMBOL, TTDI(1), RATIOS(1,1), TOT
312
         1ALS(1,I),TYPES(1,I),BARTHS(1,I),NIGGLI(1,I),ADJUST(1,I),NAMES)
313
          GO TO 910
314
      500 IF (NOTEG(STMT, 'PRINT', 5)) GO TO 550
315 C--- PRINT PROCESSOR * * * * * * * * * * *
316
          J=1
317
          LSTMT=LSTMT-5
318
          K=6
319
          WRITE (LISTPR, TFORM) HEADG
320
      510 IF (J.ER.O) GO TO 910
321
          J=INDEX(STMT(K), 1, LSTMT)
322
          IF (J.NE.O) GO TO 520
323
          LE1=LSTMT
374
          GO TO 530
325
      520 LE1=J-1
          LSTMT=LSTMT-J
326
327
      530 CALL PARSE (STMT(K), LF1, NAMES, NUM, ERR, LISTTY, LISTERR)
328
           IF (ERR) 60 TO 910
329
          DO 549 I=1, CNT
330
      540 X(T)=EVAL(VALUES(1,I))
331
          LF1=K+LE1-1
332
          WRITE (LISTPR, 800) (STMT(I), I=K, LE1)
333
          WPITE (LISTPR,810)
          WRITE (LISTPR, 820) (IDENT(1, I), IDENT(2, I), X(I), I=1, CNT)
334
335
          K=K+J
336
          GO TO 510
337
      550 IF (NOTEQ(STMT, CONVERT', 7)) GO TO 560
338 C---- VALUE CONVERT PROCESSOR * * * * * * * *
339
           IF (LSTMT.GT.13) WRITE (LISTERR,900) (STMT(I),I=1,LSTMT)
           IF (.NOT.CONVTD) GO TO 555
340
          WRITE (LISTTY, 940)
341
342
          WRITE (LISTERR, 940)
343
          60 TO 910
344
      555 CALL CONVER (VALUES, ADJUST, CNT)
345
           CONVIDE. TPUE.
346
           DO 558 II=1,80
347
           1=91-11
348
           IF (HEADG(I).EQ.BLANK) GO TO 558
349
           no 557 J=1,12
350
      557 HEADG([+J)=EXTN(J)
351
           GO TO 910
352
      558 CONTINUE
```

```
GO TO 910
353
354
      560 IF (NOTEO(STMT, 'PLOT', 4)) 60 TO 610
355 C--- X-Y PLOT PROCESSOR * * * *
356
          1 STMT=1 STMT-4
357
          STAND=NOTEQ(STMT(5), (R), 3)
358
          K=5
359
          IF (STAND) GO TO 570
360
          LSTMT=LSTMT-3
361
          K = 9
      570 IF (NOTEQ(STMT(K), "HARKER", 6)) GO TO 579
362
363 C---- HARKER SUITE OF PLOTS * * * * * * *
          ENCODE (RNAME, 970) NAMES (1,1), NAMES (2,1)
364
          DECODE (RNAME, 740) NMX
365
366
          XMIN=+1.0E+35
367
          XMAX = -1.0F + 35
368
          DO 571 L=1, CNT
369
           IF (SWITCH(1)) X(L)=ADJUST(1,L)
370
           IF (.NOT.SWITCH(1)) X(L)=VALUES(1,L)
371
           XMIN=AMIN1(XMIN, X(L))
372
      571 XMAX = AMAX1(XMAX \times X(L))
373
           IF (XMAX.GT.XMIN) GO TO 572
374
          WRITE (LISTTY, 950)
375
          WRITE (LISTERR, 950)
376
          60 TO 910
377
      572 DO 578 LL=2,21
378
          XMIN=+1.0E+35
379
          XMAX=-1.0E+35
38ŋ
          00 573 L=1,CNT
           IF (SWITCH(1)) Y(L)=ADJUST(LL,L)
381
382
           IF (.NOT.SWITCH(1)) Y(L)=VALUES(LL,L)
783 .
          XMIN = AMIN1(XMIN,Y(L))
384
      573 XMAX=AMAX1(XMAX,Y(L))
385
           IF (XMAX.LE.XMIN) GO TO 578
           ENCODE (RNAME, 970) NAMES (1, LL), NAMES (2, LL)
386
387
           DECODE (RNAME, 740) NMY
388
          CALL PRNT (X,Y,SYM,CNT,NMX,NMY,5,5,STAND,PRNTER,SCALE)
789
           IF (PPNTER.AND.SWITCH(1)) WRITE (LISTPR,920)
390
      578 CONTINUE
391
          GO TO 910
392
      579 I=INDEX(STMT(K), 1, 1, LSTMT)
393
           IF (I.NE.O) GO TO 580
394
          WRITE (LISTERR, 830) CARD
395
          WRITE (LISTTY, 830) CARD
396
           60 TO 910
397
      580 LF1=1-1
398
          LF7=LSTMT-I
399
           J = T + K
400
           CALL PARSE (STMT(K), LF1, NAMES, NUM, ERR, LISTTY, LISTERR)
           IF (ERR) 60 TO 910
401
           DO 590 I=1, CNT
402
403
           IF (SWITCH(1)) X(I)=EVAL(ADJUST(1,I))
      590 IF (.NOT.SWITCH(1)) X(I)=FVAL(VALUES(1,I))
404
405
           CALL PARSE (STMT(J), LF2, NAMES, NUM, FRR, LISTTY, LISTFRR)
           IF (ERR) 60 TO 910
406
407
           DO 600 I=1.CNT
           IF (SWITCH(1)) Y(I)=EVAL(APJUST(1,I))
408
409
      600 IF (.MOT.SWITCH(1)) Y(I)=FVAL(VALUFS(1,I))
410
           CALL PRNT(X/Y/SYM/CNT/STMT(K)/STMT(J)/LF1/LEZ/STAND/PRNTER/SCALE)
           IF (PRNTEP.AND.SWITCH(1)) WRITE (LISTPR,920)
411
412
           GO TO 910
```

```
413
      610 IF (NOTEQ(STMT, TERNARY 1,7)) GO TO 680
414 C--- TEPNARY DIAGRAM PROCESSOR * * * * *
415
           LSTMT=LSTMT-7
           I=INDEX(STMT(8),',',LSTMT)
416
417
           IF (I.NE.O) GO TO 639
418
      620 WRITE (LISTERR, 840) CARD
419
           WRITE (LISTTY, 840) CARD
420
           GO TO 910
421
      630 IF1=1-1
422
          LSTMT=LSTMT-I
423
           I=INDEX(STMT(I+8), ', ', LSTMT)
           IF (I.FQ.O) GO TO 620
424
425
           LE2=1-1
426
           LF3=LSTMT-I
427
           J=LE1+LE2+10
428
           K=LF1+9
429
           CALL PARSE (STMT(8), LE1, NAMES, NUM, ERR, LISTTY, LISTERR)
430
           IF (ERR) 60 TO 910
431
           DO 640 T=1.CNT
432
      640 Y(1) = AMAX1(0., EVAL(VALUES(1,1)))
433
           CALL PARSE (STMT(J), LE3, NAMES, NUM, ERR, LISTTY, LISTER?)
434
           TE (ERR) 60 TO 910
435
           DO 650 I=1, CNT
436
      650 Y(I) = AMAX1(O., EVAL(VALUES(1,I)))
437
           CALL PARSE (STMT(K), LEZ, NAMES, NUM, ERR, LISTTY, LISTERR)
           IF (ERR) GO TO 910
438
439
           DO 660 I=1, CNT
440
           Y1=Y(I)
441
           X1 = X(T)
442
           SUM=X1+Y1+AMAX1(O.,EVAL(VALUES(1,I)))
443
           X(I)=0.0
           Y(I)=0.0
444
445
           TF. (SUM.EQ.O.D) GO TO 660
           Y(I)=100.0*Y1/SUM
446
447
           X(T) = 100.0 * X1/9UM
448
           IF (X(I),GF,O,O,AND,Y(I),GF,O,O) GO TO 660
449
           X(1) = 0.0
450
           Y(T) = 0.0
      660 CONTINUE
451
452
           LSTMT=LSTMT+LE1+8
453
           WRITE (LISTPR, TFORM) HEADG
           WRITE (LISTPP, 850) (STMT(I), I=8, LSTMT)
454
           WRITE (LISTPR, 860)
455
456
           nn 670 I=1, CNT
457
           Y1=Y(I)
458
           X1=X(I)
459
          SUM=SIGN(1.0.Y1)*(100.0-X1-Y1)
460
      670 WRITE (LISTPR, 870) IDENT(1, I), IDENT(2, I), Y1, SUM, X1, SYM(I)
           CALL TRIANG (IDENT, X, Y, CNT, LE1, LE2, LE3, SYM, STMT(8), STMT(K), STMT(J)
461
462
          1, PRNTEP, SCALE)
463
           GO TO 910
464 C---- UNPECOGNIZED COMMAND * * * * * * * *
      680 WRITE (LISTERR, 880) (STMT(I), I=1, LSTMT)
465
466
           WRITE (LISTTY, 880) (STMT(I), I=1, LSTMT)
           60 TO 910
467
       690 IF (SWCC) CALL PLOT (0.0,0.0,999)
468
469
           CALL FILES (LISTERR,7)
           CALL FILES (LISTERR,8)
470
471
           CALL FILES (LISTIY,4)
472
           CALL FILES (LISTPR,5)
```

```
473
          CALL FILES (INPUT.5)
474
475
      700 FORMAT (/ SCALE MUST BE POSITIVE AND LESS THAN OR EQUAL TO 3.0.1)
      710 FORMAT (/ "DEVICE=CALCOMP" MUST BE SPECIFIED BEFORE SETTING SCALE
476
477
478
      720 FORMAT (/1x,244, DEFINED AS 1,8041)
479
      740 FORMAT (8041)
      750 FORMAT (/ NO MORE THAN 99 NORMS MAY BE STORED. THE LAST NORM WILL
480
481
         1 BE WIPED OUT.')
482
      760 FORMAT (/ STATEMENT LENGTH(160) EXCEEDED ON THE FOLLOWING STATEME
483
         1NT: 1/(1x,80A1/),/ DID YOU FORGET A SEMICLON? )
      770 FORMAT (/ FORMAT COMMAND FRROR (MISSING PARENTHESIS) IN 1,80A1)
484
485
      780 FORMAT (/ FRROR IN MODIFY COMMAND ON 1,80A1)
      790 FORMAT (/ NO MORE THAN 15 NAMES MAY BE DEFINED. DEFINITION IGNORE
486
487
         10 FOR NAME= 1,244)
488
      800 FORMAT (/ EVALUATION OF 1,4041)
      810 FORMAT (/6(6X,'ID',7X,'VALUE ')/)
489
490
      820 FORMAT (6(4X, 44, 41, F12, 3))
      830 FORMAT (/ PLOT COMMAND ERPOR ON 1,8041)
491
      840 FORMAT (/ TERNARY COMMAND EPROR ON $,80A1)
492
493
      850 FORMAT (' TERNARY RATIOS FOR ',10041)
494
      860 FORMAT (/ SAMPLE R1',6x, R2',6x, R3
                                                     SYMBOL'/)
      870 FORMAT (2X, A4, A1, 358, 2, 4X, A1)
495
496
      880 FORMAT (/' UNRECOGNIZED COMMAND GIVEN AS: '1x,80A1,(/32x,80A1))
497
      890 FORMAT (/, OXIDE COMMAND CONTAINS A NAME WHICH IS NOT IN THE LIST
         1 OF ACCEPTABLE OXIDES. ACCEPTABLE OXIDES ARE: 1/1x,22A4/1x,20A4,//,
498
499
         2' THE UNRECOGNIZED NAME IS ', 2A4)
500
      900 FORMAT (/ THE FOLLOWING COMMAND CONTAINS EXCESSIVE CHARACTERS. 1//
501
         1 14,20A1// DJD YOU FORGET A SEMICOLON? 1)
502
      920 FORMAT (/38x, NOTE: PLOT IS BASED ON ADJUSTED OXIDES.)
      930 FORMAT (/* NORMS CANNOT BE RECALCULATED FROM DATA EXPRESSED IN MOL
503
504
         1FS_1)
505
      940 FORMAT (/' DATA HAVE ALREADY REEN CONVERTED TO MOLES.')
506
      950 FORMAT (/ NO SIO2 GIVEN FOR HARKER SUITE OF PLOTS.')
507
      970 FORMAT (20A4)
508
          END
```

Block Data

```
510 BLOCK DATA
510 INTEGER TEORM
511 COMMON /UNITS/ HEADG(92),TEORM(4),INPUT,LISTPR,LISTTY,LISTERR
512 DATA TEORM/'(151','10x9','231/','/) '/
513 DATA INPUT,LISTPR,LISTTY,LISTERR/4,3,0,20/
514 END
```

```
515
           SUBROUTINE NORM (CARD, OUTM, FORMAT, NCS, TTDI, RATIOS, TOTALS, TYP
516
         1FS, BARTHS, NIGGLI, IDENT, NOX, ORDER, ADJUST, NAMES)
517
          IMPLICIT REAL (M, N)
518
          LOGICAL NOHZO, BARIJE, KSPAR, CANCRI, MONORM, CONVID, STORE, NORMAL,
519
         1 PRNTER
520
           INTEGER CARD(80), SYM, FORMAT(15), SAM, BUFFFR(60), IDENT(2),
521
         1 HEADG(92), TEORM(4), RASSYM, I, TT, ORDER(21), NOX, NCS, VAMES(2,81)
522
          COMMON /FLAGS/ NOH20, BARITE, KSPAR, CANCRI, NONORM, CONVID, STOPE,
523
         1 NORMAL PRNTER
524
           COMMON /UNITS/ HEADG TEORM INPUTALIST PROLISTLY ALISTER
525
           COMMON /BULKSTOR/ PAGE (132, 180) , RASSYM
526 C---- WC IS USED FOR THE WEIGHT COMPONENT OF THE 21 OXIDES \star \star \star
527
           COMMON /ALIGN1/ WC1,WC2,WC3,WC4,WC5,WC6,WC7,WC8,WC9,WC10,WC11,WC12
528
         1,WC13,WC14,WC15,WC16,WC17,WC18,WC19,WC20,WC21
529 C---- MM IS USED FOR THE MOLAR MINERALS 1 TO 37; 35 TO 37 ARE DI. HY.
530 C
            AND OL RESPECTIVELY.
           COMMON /ALIGN3/ MM1, MM2, MM3, MM4, MM5, MM6, MM7, MM8, MM9, MM10, MM11, MM12
531
532
          1,MM13,MM14,MM15,MM16,MM17,MM18,MM10,MM20,MM21,MM22,MM23,MM24,MM25,
533
         2MM26,MM27,MM28,MM29,MM30,MM31,MM32,MM33,MM34,MM35,MM36,MM37
534 C---- MC IS MOLAR COMPONENT (OXIDES), PM IS WT % MINERALS, PC IS WT %
535 C
          COMPONENT (ADJUSTED OXIDES), NP IS THE NORMATIVE PARTITIONING FOR
           CPX, OPX, AND OL.
536 C
537
           REAL KAMC(21) A OUTM(81) A WC(21) A PM(34) A NP(11) A MM(37) A PC(21) A MG A VALUE
538
          15(81, 99), RATIOS(2), TOTALS(2), TYPES(2), BARTHS(21), NIGGLI(12)
539
         2 .RM(21),WM(34),ADJUST(21),ADJ(21,99)
540
          EQUIVALENCE (WC1, WC(1)), (MM1, MM(1))
541 C--- RM IS MOLECULAR CONVERSION FACTORS FOR CHEMICAL COMPONENTS * * * *
542
           DATA RM
                       /1.664314E-2,9.807652E-3,6.262047E-3,1.391858E-2,2.4806
          188F-2,1.783186F-2,1.61345E-2,1.061533F-2,5.550825E-2,1.251583E-2,7
543
544
          2.945002E-3.1.409694F-2.8.115645E-3.2.272213E-2.1.249029E-2.2.82063
         365-7,5.263601E-2,3.118762E-2,6.579372E-3,1.33852E-2,6.521481E-3/
545
546 C---- WM IS THE MOLECULAR CONVERSION FOR MINERALS * * * * * * * * * * *
547
           DATA WM
                       160.0848,101.9612,183.3036,556.6734,524.449,278.2102,43
548
          16.5038,284.1098,316.3342,116.8856,142,0412,105.989,462.0104,122.06
549
          238,154.2882,116.1642,100.3962,131.9312,140.7076,203.7776,172.2436,
550
         3231.5383.223.8363.159.6922.151.7449.196.063.135.9732.79.8988.336.2
         4084,78.0768,119.975,100.0894,84.32135,115.8564/
551
552
          IF (NORMAL) GO TO 4
553
           SYM=RASSYM
554
           ENCODE (IDENT, 610) (CARD(I), I=73,77)
555
           GO TO 8
556
        4 FMCODE(IDENT,610) (CARD(I), I=76,80)
557
         SYM=CARD(4)
558
        8 ENCODE (BUFFER, 610) CARD
559
           IF (NCS.FQ.1) GO TO 20
560
           READ (INPUT, 10) ((BUFFFP(20*(J-1)+I), I=1,20), J=2,NCS)
561
       10 \text{ FOPMAT}(20A4)
562
       20 DECODE(BUFFER, FORMAT) (PM(I), I=1, NOX)
563
          00 30 1=1.21
564
       30 P((I)=0.0
          D \cap 4 \cap I = 1, NOX
565
566
          J=ORDER(I)
567
       40 P((J) = PM(I)
           IF (STORE) GO TO 90
568
569
          00.50 I = 1.34
570
       50 PM(I) = 0.0
571
           00 60 I=1,11
572
       60 \text{ NP}(I) = 0.0
```

```
573
           GO TO 80
574 C--- RECALCULATE NORMS * * * * * * * * *
           ENTRY RECALCIOUTM, IDENT, SAM, TTDI, RATIOS, TOTALS, TYPES, BARTHS, NIGGLT
575
576
          1.ADJUST)
           IF (IDENT(1).EQ. DUMM*) RETURN
577
578
           SYM=SAM
579
           00 70 I=1,21
580
       70 \text{ PC(I)} = 00\text{TM(I)}
581
       80 RATIO=0_0
582
           R1 = 0.0
583
           IF (PC(3).NF.O.O) RATIO=PC(4)/PC(3)
           IF (PC(1).NE.O.O) R1=PC(2)/PC(1)
584
585
           RATIOS(1)=R1
586
           RATIOS(2) = RATIO
587
       90 SUM=0.0
588 C---- CALCULATE ANALYTICAL SUM
589
           DO 100 I=1,21
590
           OUTM(I) = PC(I)
591
           ADJUST(I) = PC(I)
592
      100 SUM=SUM+PC(I)
593
           SUM1=SUM
594 C---- ADJUST SUM FOR CL AND F
595
           SUM = SUM - 0.42 * PC(17) - 0.23 * PC(16)
596
           TOTALS(1)=SUM
597
           IF (STORE) GO TO 570
598
           IF (NOH2O) SUM=SUM-PC(9)
599
           IF (NOH20) PC(9)=0.0
600
           IF (MOH2O) WRITE (LISTERR, 760) IDENT
601
           IF (_NOT_NONORM) GO TO 110
           WRITE (LISTPR, TFORM) HEADG
605
603
           WPITE (LISTPR, 615) IDENT, SYM
604
           WRITE (LISTPR,620) (OUTM(I), I=1,21), SUM1, TOTALS(1)
605
           IF (.NOT.NOH2O) WRITE (LISTPR,625)
606
           IF (NOH2O) WRITE (LISTPR, 626)
607
      110 SUM=100.0/SUM
608
           DO 120 I=1,21
609 C---- NORMALIZE OXIDES TO 100%
610
           PC(I) = SUM * PC(I)
611
           ADJUST(1)=PC(1)
612 C---- CONVERT OXIDES TO MOLECULAR AMOUNTS
613
           MC(I) = PC(I) * RM(I)
614
      120 \text{ WC(I)} = \text{MC(I)}
615
           IF (_MOT_NONORM) GO TO 130
616
           WRITE (LISTPR,630)(ADJUST(I), I=1,11), R1, (MC(I), I=1,11), (ADJUST(I),
          1 I=12,21), PATIO, (MC(I), I=12,21)
617
618
      130 DO 140 I=1,37
619
      140 \text{ MM}(T) = 0.0
620 C--- ADD MNO AND NIO TO FEO
        . WC4=WC4+WC12+WC20
621
622 C--- ADD BAO TO NAZO OR KZO OR CAO
623
           IF (.NOT.BARITE) 50 TO 144
624
           WC7=WC7+WC21
625
           WRITE (LISTERR, 730) IDENT
           50 TO 147
626
627
      144 IF (.MOT.KSPAR) GO TO 145
628
           WCQ=WCQ+WC21
629
           WRITE (LISTERR, 740) IDENT
630
           60 TO 147
631
       145 WC6=WC6+WC21
```

632 C---- CALCULATE APATITE

```
633
      147 WC6=WC6-3.33333*WC11
634
           IF (WC6.6E.O.O) GO TO 150
635
           PC(11)=ABS(WC6)/3.33333
           WC11=WC11-PC(11)
636
637
           P((11)=P((11)/RM(11)
638
           WRITE (LISTERR, 710) IDENT, PC(11), NAMES(1, 11), NAMES(2, 11)
639
           WRITE (LISTTY, 710) IDENT, PC(11), NAMES(1, 11), NAMES(2, 11)
640
           WC 4=0.0
641
      150 MM29=WC11
642 C---- CALCULATE HALITE
643
           WC7=WC7-0.5*WC16
644
           IF (WC7.GE.O.O) GO TO 160
645
           PC(16) = ABS(WC7)/0.5
646
           WC16=WC16-PC(16)
647
           PC(16) = PC(16) / RM(16)
648
           WRITE (LISTERP, 710) IDENT, PC (16), NAMES (1, 16), NAMES (2, 16)
649
           WPITE (LISTTY, 710) IDENT, PC(16), NAMES(1, 16), NAMES(2, 16)
650
           WC7=0.0
651
      160 MM10=0.5+WC16
652 C---- CALCULATE THEMARDITE
653
           MM11=AMIN1(WC7,WC15)
654
           WC 7=WC7-MM11
655
           WC15=WC15-MM11
656 C--- COMBINE S AND SO3
657
           WC18=WC18+WC15
658 C--- CALCULATE PYRITE
659
           WC4=WC4-0.5*WC13
660
           IF (WC4.GE.O.O) GO TO 170
661
           PC(18) = ABS(WC4)/0.5
           WC18=WC18-PC(18)
662
563
           PC(13) = PC(18) / RM(18)
554
           WPITE (LISTERR, 710) IDENT, PC(18), NAMES(1, 18), NAMES(2, 18)
665
           WRITE (LISTLY,710) IDENT, PC(18), NAMES(1,18), NAMES(2,18)
666
           WC4=0.0
      170 MM31=0.5*Wc18
667
668 C---- CALCULATE CHROMITE
669
           WC4=WC4-WC19
670
           IF (WC4.6F.O.O) GO TO 180
671
           PC(19) = ABS(WC4)
           WC19=WC19-PC(19)
672
673
           P((19) = P((19)/PM(19))
674
           WRITE (LISTERR, 710) IDENT, PC(19), NAMES(1, 19), NAMES(2, 19)
575
           WRITE (LISTTY, 710) IDENT, PC(19), NAMES(1, 19), NAMES(2, 19)
676
           WC4=0.0
677
      180 MM23=WC19
678 C---- CALCULATE ILMENITE
679
           MM25=AMIN1(WC4,WC10)
680
           WC4=WC4-MM25
           WC10=WC10-MM25
681
          ADJUST F FOR APATITE
682 (----
683
           WC17=WC17-0.666667*MM29
684
           IF (WC17.LT.O.O) WC17=0.0
685 C---- CALCULATE FLUORITE
           WC5=WC6-0.5*WC17
686
687
           IF (WC6.GE.O.O) 50 TO 190
688
           90 (17) = ABS (WC6) /0.5
689
           WC17 = WC17 - PC(17)
690
           PC(17) = PC(17) / PM(17)
           WRITE (LISTERR, 710) IDENT, PC(17), NAMES(1,17), NAMES(2,17)
691
692
           WRITE (LISTIY, 710) IDENT, PC(17), NAMES(1, 17), NAMES(2, 17)
```

```
693
          WCK=0.0
694
      190 MM30=0.5 + WC17
695
           IF (.NOT.CANCRI) GO TO 194
          WRITE (LISTERP, 750) IDENT
696
697 C---- CALCULATE SODIUM CARBONATE IF REQUESTED
698
          MM12=AMIN1(WC7, WC14)
699
           WC7=WC7-MM12
700
          WC14=WC14-MM12
701
           IF (WC14.LF.O.O) GO TO 195
702 C---- CALCULATE CALCUTE
703
      194 MM32=AMIN1 (WC6, WC14)
704
           WC6=WC6-MM32
705
          WC14=WC14-MM32
706 C--- CALCULATE MAGNESITE
707
           MM33=AMIN1(WC5,WC14)
708
          WC5=WC5-MM33
709
           WC14=WC14-MM33
           IF (WC14.LE.O.O) GO TO 195
710
711 C--- CALCULATE SIDERITE
          MM34=AMIN1 (WC4, WC14)
712
713
          WC4=WC4-MM34
714
          WC14=WC14-MM34
715
           IF (WC14.LE.O.O) GO TO 200
716
           PC(14) = WC14/RM(14)
717
          WRITE (LISTERR, 710) IDENT, PC(14), NAMES(1, 14), NAMES(2, 14)
718
           WRITE (LISTTY,710) IDENT, PC(14), NAMES(1,14), NAMES(2,14)
719 C--- ASSIGN ALL MGO TO ENSTATITE
720
      195 MM17=WC5
721 C--- CALCULATE ZIRCON
722
      200 WC1=WC1-WC13
723
           IF (WC1.GE.O.O) GO TO 210
724
          WC1=ABS(WC1)
725
           WC13=WC13-WC1
           PC(13) = WC1/RM(13)
726
727
           WPITE (LISTERR, 710) IDENT, PC(13), NAMES(1, 13), NAMES(2, 13)
728
           WPITE (LISTTY, 710) IDENT, PC (13), NAMES (1, 13), NAMES (2, 13)
729
           WC1 = 0.0
730
      210 MM3=WC13
731 C---- CALCULATE ORTHOCLASE
732
           DIFF=WC2-WC8
733
           IF (DIFF.GE.O.O) GO TO 220
734
          MM4=WC2
735 C--- CALCULATE POTASSIUM METASILICATE
736
           MM15=-DIFF
737
          WC2=0.0
          WC 8=Q.O
738
739
           GO TO 250
740
      220 MM4=WC8
741
          WC2=DIFF
742 C---- CALCULATE ALBITE
743
           DIFF=WC2-WC7
744
          WC8=0.0
745
           IF (DIFF.GE.O.O) GO TO 230
746
          MM5=WC2
747
           WC7=-DIFF
748
          wr2=0.0
749
          GO TO 250
750
      230 MM5=WC7
751
          WC 2=DIFF
752 C--- CALCULATE ANORTHITE
```

```
753
          DIFF=WC2-WC6
754
          WC7=0.0
755
          IF (DIFF.GE.O.O) GO TO 240
756
          MM6=WC2
757
          WC6=-DIFF
758
          WC2=0.0
759
          GO TO 250
760
      240 MM6=WC6
761 C--- CALCULATE CORUNDUM
762
          MM2=DIFF
763
          MC S=0.0
764
          WC6=0.0
765 C--- CALCULATE TITANITE (SPHENE)
      250 DIFF=WC10-WC6
766
767
          IF (DIFF.GE.O.O) GO TO 260
768
          MM26=WC10
769
          WC6=-DIFF
770
          GO TO 270
771
      260 MM26=WC6
772 C---- CALCULATE RUTILE
773
          MM28=DIFF
774
          WC6=0.0
775 C---- CALCULATE ACMITE
776
      270 DIFF=WC3-WC7
777
          IF (DIFF.GE.O.O) GO TO 280
778
          MM13=WC3
779 C---- CALCULATE SODIUM METASILICATE
780
          MM14=-DIFF
781 C---- CALCULATE FERROSILITE
782
          MM18=WC4
783
          GO TO -300
784
      280 MM13=WC7
785
          WC3=DIFF
786
          WC7=0.0
787 C--- CALCULATE MAGNETITE
788
          DIFF=WC3-WC4
789
          IF (DIFF.GE.O.O) GO TO 290
790
          MM22=WC3
791 C---- ALTENATE CALCULATION OF FERROSILITE
792
          MM18=-DIFF
793
          GO TO 300
794
      290 MM22=WC4
795 C--- CALCULATE HEMATITE
796
          MM74=DIFF
797
      300 SUMMF=MM17+MM18
798
          R1 = 0.0
799
          R2 = 0.0
800
          IF (SUMMF.LE.O.O) GO TO 310
RO1 C--- DETERMINE PARTITIONING OF FEO & MGO FOR PYROXENES & OLIVINE
802
          R1=MM17/SUMMF
803
          R2=MM18/SUMMF
804 C---- CALCULATE WOLLASTENITE, DIOPSIDE AND HYPERSTHENE
805
      310 DIFF=SUMMF-WCA
          IF (DIFF.LT.O.O) GO TO 320
806
807
          MM35=WC6
808 .
          MM36=DIFF
809
          60 TO 330
810
      320 MM35=SUMMF
          MM16=-DIFF
811
```

812 C---- BALANCE SILICA

```
813
      330 WC1=WC1-MM26-4.0*MM13-MM14-MM15-6.0*(MM4+MM5)-MM16-2.0*(MM6+MM35)-
914
         1 MM 36
815
          IF (WC1.LT.O.O) GO TO 340
816 C---- FXCESS SILICA IS QUARTZ
817
          MM1=WC1
818
          60 TO 420
819 C---- STMTS 340 TO 410-ADJUSTS NORM FOR SILICA DEFICIENCY
820 C--- CONVERT HYPERSTHENE TO OLIVINE & SIO2
821
      340 WC1=WC1+MM36
822
          DIFF=2.0+WC1-MM36
823
          IF (DIFF.LT.O.O) GO TO 350
824
          MM37=MM36-WC1
825
          MM36=DIFF
826
          60 TO 420
827
      350 MM37=0.5*MM36
828
          MM 36= 9.0
829 C--- CONVERT TILANITE TO PEROSKITE & SIO2
830
          WC1=WC1-MM37+MM26
831
          IF (WC1.LT.Q.O) 60 TO 360
832
          MM27=MM26-WC1
833
          MM26=WC1
234
          60 TO 420
835 C--- CONVERT ALBITE TO NEPLELINE & SIO2
236
      360 WC1=WC1+6_0*MM5
837
          MM27=MM26
838
          MM 26=0.0
          DIFF=WC1-2.0*MM5
239
240
          IF (DIFF.LT.O.O.OR.WC1.GT.6.0*MM5) GO TO 370
841
          MMR=1.5*MM5-0.25*WC1
842
          MM5=9.25*DIFF
          GO TO 420
843
844
      370 MMP=MM5
845
          MM5 = 0.0
846 C--- CONVERT ORTHOCLASE TO LEUCITE & STOP
847
          WC1=WC1-2.0*MM8+6.0*MM4
848
          DIFF=401-4.0*MM4
849
          IF (DIFF.LT.O.O.OR.WC1.GT.6.0*MM4) GO TO 380
850
          MM7=3_0*MM4-0-5*WC1
851
          MM4=0.5*DIFF
852
          60 TO 420
853
      380 MM7=MM4
854
          MM4=0.0
855 C---- COMVERT WALLATONITE TO CALCIUM ORTHOSILICATE & SIO?
856
          WC1=WC1-4.0*MM7+MM16
257
          DIFF1=MM16-WC1
858
          DTFF2=2.0+WC1-MM16
859
          IF (DIFF1.LT.O.O.OR.DIFF2.LT.O.O) GO TO 390
860
          MM21=DIFF1
861
          MM16=DIFF2
862
          60 TO 420
863 C--- CONVERT DIOPSIDE TO CALCIUM ORTHOSILICATE & OLIVINE & SIO2
264
      390 WC1=WC1+2.0*MM35
865
          FAC1=2.0*(WC1-MM35)-MM16
866
          FAC2=4.0*MM35+MM16-2.0*WC1
867
          FAC3=FAC2+2.0*MM16
868
          IF (FAC1.LT.O.O.AR.FAC2.LT.O.O.AR.FAC3.LT.O.A) GO TO 400
869
          MM21=7.25*FAC3
870
          MM37=MM37+0.25*FAC2
971
          MM 35=7.5 + FAC1
972
          MM16=0.0
```

```
873
           GO TO 420
874 C--- CONVERT LEUCITE TO KALIOPHILITE & SIO?
275
      400 MM37=MM37+0.5*MM35
376
           MM21=0.5*(MM16+MM35)
877
           WC1=WC1-MM35-0.5*MM16+4.0*MM7
878
           MM35=0.0
           MM16=0.0
879
           DIFF1=WC1-2.0*MM7
880
           DTFE2=WC1-2.0*DTFE1
881
882
           IF (DIFF1.GE.A.A) GO TO 410
883 C---- CALCULATE AMOUNT OF SIO2 DEFICIENCY AS EXCESS OLIVINE
884
           MM37=MM37+DIFF1
885
           WC1=ABS(WC1)
886
           WC5=2.0*R1*ABS(DIFF1)/RM(5)
237
           WC4=2.0*R2*ABS(DIFF1)/RM(4)
222
           WC1=0.0
889
           MMO=MM7
890
           MM7=0.0
891
           WRITE (LISTTY, 720) IDENT, WC5, WC4
892
           WRITE (LISTERR, 720) IDENT, WC5, WC4
893
           GO TO 420
894
      410 MM9=0.5*DIFF2
295
           MM 7=0 - 5 * D T F F 1
896 C---- CALCULATE PARTITIONINGS IN CPX, OPX AND OL * * * *
897
      420 DI=MM35
298
           DIMO=DI
899
           DIEN=R1*DI
900
           DIFS=R2*DI
901
           HY=MM36
902
           HYFN=R1*HY
903
           HYFS=R2*HY
904
           OL=MM37
905
           OLFO=R1*OL
           MM 19=0LF0
906
907
           OLFA=R2*OL
800
           MM20=OLFA
9119
           MM16=MM16+DIWO
910
           MM17=DIEN+HYEN
911
           MM118=DIES+HYES
912
           DO 430 I=1,34
913
      430 PM(I) = WM(I) \star MM(I)
           IF (.NOT.NONORM) GO TO 440
914
915
           IF (.NOT.NOH20) WRITE (LISTPR.635)
916
           IF (NOH20) WRITE (LISTPR,636)
917
           WPITE (LISTPR, 640) (MM(I), I=1,12), (PM(I), I=1,12), (MM(I), I=13,24),
          1 (PM(I), I=13,24), (MM(I), I=25,34)
918
919
      440 DIFF2=0.0
050
           DO 450 I=1,12
921
      450 DIFF2=DIFF2+PM(I)
955
           DIFF1=DIFF2
923
           nn 460 I=13,34
924
      460 DIFF1=DIFF1+PM(1)
925
           Y=DIFF1-DIFF2
926 C--- CONVERT PARTITIONINGS TO WT X
927
           NP(2) = DIWO * WM(16)
928
           NP(3) = DIFN * WM(17)
020
           NP(4)=DIFS+WM(1R)
930
           NP(1) = NP(2) + NP(3) + NP(4)
931
           MP(6) = HYEN \times WM(17)
           NP(7)=HYFS*WM(18)
932
```

```
933
           NP(5) = NP(6) + NP(7)
934
           NP(9) = 01 FO * WM(19)
935
           NP(10) = 0 LFA * WM(20)
936
           WOL=MMI6-DIWO
937
           NP(11) = WOL * WM(16)
938
           NP(8) = NP(9) + NP(10)
939
           TOTALS(2)=DIFF1
940
           TYPES(1)=DIFE2
941
           TYPFS(2)=Y
942
           TTDT = PM(1) + PM(4) + PM(5) + AMAX1(PM(7), 0.0) + PM(8) + AMAX1(PM(9), 0.0)
943
           IF (_NOT_NONORM) GO TO 480
944
           WRITE (LISTPR,650) (PM(I), I=25,34), DIFF1, DIFF2, Y, DI, DIWO, DIFN,
945
          1 DIFS, HY, HYFN, HYFS, OL, OLFO, OLFA, WOL, (NP(I), I=1,11)
946
           WRITE (LISTPR, 660) TTOI
947 C---- CALCULATE BARTH'S CATIONS * *
       480 NO 490 I=1,21
948
949
       490 WC(I)=MC(I)
950
           MC2=2-0*WC2
951
           WC3=2.0*WC3
952
           WC7=2.0*WC7
953
           WC8=2.0*WC8
954
           MCG=5 U+MCG
955
           WC11=2.0*WC11
956
           WC19=2.0*WC19
957
           SUM=0.0
958
           DO 500 I=1,21
959
       500 SUM=SUM+WC(I)
960
           SUM=SUM-WC9-WC16-WC17-WC18
           SUM=100.0/SUM
961
962
           nn 510 T=1,21
963
           WC(I) = SUM * WC(I)
964
       510 BAPTHS(I)=WC(I)
965
           IF (.NOT.NONORM) GO TO 520
966
           WRITE (LISTPR, 490) WC
967
    C---- NIGGLI'S VALUES * * *
968
       520 00 530 I=1,21
969
       530 \text{ WC}(I) = \text{MC}(I)
970
           AL = WC 2 + WC 19
071
           FM=2.0*WC3+WC4+WC5+WC12+WC20
972
           C = WC6 + WC21
973
           ALK=WC7+WCR
           SUM=100.0/(AL+FM+C+ALK)
974
975
           AL =SUM * AL
976
           NIGGLI(1) = AL
977
           FM=SUM+FM
978
           NIGGLI(2) = FM
979
           C=SUM + C
ORD
           NIGGLI(3)=0
981
           ALK=SUM*ALK
982
           NIGGLI(4) = \Lambda L X
983
           ST=SUM*WC1
994
           NIGGLI(5)=SI
985
           TI=SUM+HC10
995
           NIGGLI(6)=TI
997
           P= $U" + WC11
998
           NIGGLI(7)=P
989
           H= $UM + WC9
997
           NIGGLI(8) = H
991
           K = 0.0
992
           DIFF1=WC7+WC8
```

```
993
            IF (DIFF1.NF.O.O) K=WCR/DIFF1
994
           MG=0.0
995
           SIP=100.0+4.0*ALK
996
           IF (FM.NE.O.O) MG=SUM*WCS/FM
997
           TF (ALK.GT.AL) SIP=100.0+3.0*AL+ALK
998
           07=SI-SIP
999
           NIGGLI(9)=K
           NIGGLI(10) = MG
1000
1001
           NIGGLI(11)=SIP
1002
           NIGGLI(12)=07
1003
            IF (.NOT.NONORM) GO TO 540
1004
           WRITE (LISTPR, 700) AL, FM, C, ALK, SI, TI, P, H, K, MG, SIP, QZ
1005
       540 DO 550 I=1,34
1006
       550 \text{ OUTM}(I+21) = PM(I)
1997
            DO 560 I=1.11
1008
       560 \text{ OUTM}(I+55) = NP(I)
1009
       570 STORE = FALSE.
1010
            RETURN
1011 C--- CONVERT VALUES TO MOLAR DATA * *
1012
            ENTRY CONVER (VALUES, ADJ, TT)
1013
            00 600 I=1.TT
1014
            DO 580 J=1,21
1015
            VALUES (J.I) = VALUES (J.I) * RM(J)
1016
       580 ADJ(J,I)=ADJ(J,I) \pmRM(J)
1017
            DO 590 J=22,55
       590 VALUES(J.I)=VALUES(J.T)/WM(J-21)
1018
1019
           X1=VALUES (57, 1)/WM(16)
1020
            VALUES (57,1)=x1
1021
            Y1=VALUES (58, 1) /WM (17)
1022
            VALUES (58, 1) = Y1
1023
            SUM=VALUES (59,I)/WM(18)
1024
           VALUES (59, I) = SUM
1025
           VALUES (56, 1) = X1+Y1+SUM
1026
            X1=VALUES(61,I)/WM(17)
1027
            VALUES (61, I) = X1
1028
            Y1=VALUES(62,1)/WM(18)
1029
            VALUES (62,1)=Y1
1030
            VALUES(60,I)=X1+Y1
1031
            X1=VALUES(64,1)/WM(19)
1032
            VALUFS(64,I)=X1
1033
            Y1=VALUES (65, 1)/WM(20)
            VALUES (65, T) = Y1
1034
1035
            VALUES (67, T) = X1+Y1
1036
       600 VALUES (66, I) = VALUES (66, I) / WM (16)
1037
            RETURN
1038
       610 FORMAT (80A1)
1039
       615 FORMAT (' SAMPLE NO. ',A4,A1,10x,'PLOTTING SYMBOL IS ',A1/)
       620 FORMAT ('ORIGINAL WT.PCT. OXIDES'/'O SIO2 AL203 FE203 FE0
1040
                                    H20 TI02 P205
1041
           1 1 460
                   CAO NAZO
                                K20
                                                          MNO 7R02 CO2
1042
                 CL
                         F
                               S CR203
                                         NIO PAO'/1X,21F6.2//' SUM OF ORIGINA
           3L OXIDES= ',F6.2//' SUM ADJUSTED FOR F & CL=',F6.2)
1043
1044
       625 FORMAT (/ OXIDES NOPMALIZED TO 100 PERCENT : ')
       626 FORMAT (/' OXIDES NORMALIZED TO 100 PERCENT : (H20 FPFE)')
1045
       630 FORMAT (/ CONSTITUENTS
                                                           FEZOT
                                        5102
                                                 AL 203
                                                                      FF0 . 6 X . . MGO
1046
           1
                CA0 . 6x . NA20
                                   K201,6x, 1H201,6x, 1TI021,5x, 1P205 AL203/SI021
1047
           2/' PERCENTAGES',11F9.2,F10.3/' MOL. AMTS. ',11F9.4//' CONSTITUENTS
1048
                                  CO2',6x,'SO3',7x,'CL',6x,'F',8x,'S',6x,'CR2O3
1049
           3
               MNO',6X,'ZRO2
                          BAO',12X,'FEO/FE203'/' PERCENTAGES',10F9.2,F19.3/' MO
1050
           4
1051
           5L. AMTS. 1,10F9.4)
1052
       635 FORMAT (/ CIPW NORM : 1)
```

```
1053
        636 FORMAT (/' CIPW NORM : (H20 FREE)')
        640 FORMAT (/* MINERALS*,9X,*Q*,8X,*C*,8X,*Z*,9X,*OR*,7X,*AB*,7X,*AN*,
. 1054
 1055
           17x,'LC',7x,'NF',7x,'KP',7x,'HL',7x,'TH',7x,'NC'/' MOL. AMTS. 1,12F
 1056
           29.4/' PERCENTAGES',12F9.3/'OMINERALS',9X,'AC',7X,'NS',7X,'KS',7X,'
 1057
           3WO '-7X, 'FN', 7X, 'FS', 7X, 'FO', 7X, 'FA', 7X, 'CS', 7X, 'MT', 7X, 'CM', 7X, 'HM
           4'/' MOL. AMTS. 1,12F9.4/' PERCENTAGES',12F9.3/'OMINERALS',9X,'IL',
 1058
 1059
           57x, 'TN', 7x, 'PF', 7x, 'RU', 7x, 'AP', 7x, 'FR', 7x, 'PR', 7x, 'CC', 7x, 'MG
 1060
                               SALIC FEMIC'/' MOL. AMTS. ',10F9.4)
                       TOTAL
        650 FORMAT (' PERCENTAGES', 13 F9. 3/'OMINERALS', 9X, 'DI
 1061
                                                                  DI-WO 44X. DI
 1062
           1-FN
                    DI-FS
                               HY HY-EN HY-FS
                                                           ٥L
                                                                  OL-F0',4X, OL-
 1063
           2FA
                    WOL!/ MOL. AMTS. ',11F9.4/' PERCENTAGES',11F9.3)
 1064
        660 FORMAT (/ THORNTON + TUTTLE DIFFERENTIATION INDEX = 1, F7.3)
 1965
        690 FORMAT (*OBARTHS CATIONS SI
                                                       FF+3
                                               A1.
                                                               FE+7
 1066
                      NA',7X,'K',7X,'H',6X,'TI',7X,'P',6X,'MN'/1X,13X,12F8.?,/1
           201,25x,1ZP1,7x,1C1,6x,1S11,6x,1CL1,7x,1F1,6x,1S21,6x,1CR1,6x,1NI1,
 1067
 1068
           36X, 1941/1 1,21X,9FR,2)
 1069
        700 FORMAT ("ONIGGLI VALUES
                                       AL*
                                                        C *
                                                                ALK*
                                               FM*
                                                                        SI'.6X.
           1'RI',7X,'P',7X,'H',7X,'K',6X,'MG',6X,3HSI',5X,'QZ'/' ',13X,12F9.2)
 1070
        710 FORMAT (/' SAMPLE '.A4.A1.' CONTAINS AN EXCESS OF '.F6.2.' WEIGHT P
 1071
 1072
           1EPCENT ',44,41/4x, BEYOND THAT USED IN NORMATIVE CALCULATIONS')
 1073
        720 FORMAT (/' SAMPLE '.44.A1.' CONTAINS TOO LITTLE SID2 TO COMPUTE NO
 1074
           1RM'./4x,'SIO2 DEFICIENCY IS EQUIVALENT TO AN EXCESS OF MGO OF'.
 1975
           2F7.2, WT "1/4X, AND AN EXCESS OF FEO OF', F7.2, WT %.')
 1076
        730 FORMAT (/ SAMPLE ', 44, A1, '-- BAO ADDED TO NAZO. ')
        740 FORMAT (/ SAMPLE ',A4,A1, --BAO ADED TO K20.1)
 1077
        750 FORMAT (/ SAMPLE ', A4, A1, '-- NA2CO3 CALCULATION ATTEMPTED. ')
 1078
 1079
        760 FORMAT (/' SAMPLE '.A4,A1,'--NORM COMPUTED ON WATER FREE BASES.')
 1080
            END
```

```
SURROUTINE SUMPNT (STMT, LSTMT, CNT, IDENT, NAMES, NOX, ORDER, SYM, NUM)
1081
1082
            EXTERNAL SAW (descriptors)
1083
            COMMON /FLAGS/ NOH20, PAD1(4), CONVTD, PAD2(3)
1084
            COMMON /UNITS/ HEADG, TEORM, INPUT, LISTPR, LISTTY, LISTERR
1085
            COMMON /BULKSTOR/ PAGE, RASSYM
1086
            COMMON /MASK/TTDI, ADJUST, VALUES, NIGGLI, BARTHS, RATIOS, TOTALS, TYPES
1087
            LOGICAL NOHZO, CONVID, MOTEQ
1088
            INTEGER STM(160),STMT(LSTMT),RPAREN,SYM(1),NAMEB(21),NAMEN(12),
1089
           1 HEADG(92), TEORM(4), PAD(2), CNT, ORDER(1), IDENT(2,99), NAMES(2,81),
1090
           2 PAGE (132,181)
            REAL VALUES(81,99), NIGGLI(12,99), TTDI(99), RATIOS(2,79),
1091
1092
           1 TOTALS(2,99),TYPES(2,99),BARTHS(21,99),ADJUST(21,99)
1093
            DATA NAMER/'SI', 'AL', 'FE+3', 'FE+2', 'MG', 'CA', 'NA', '<', 'H',
1094
           1 'TI','P','MN','ZP','C','S1','CL','F','S2','CR','NI','94'/
1095
            DATA NAMEN/'AL*','FM*','C*','ALK*','SI','RI','P','H','K','MG',
1096
           1 3HSI', 'QZ'/, RPAREN/')'/
1097
            K = -12
1098
         10 K=K+12
1999
            IF (K.GE.CNT) RETURN
1100
            CALL MOVE (STMT, STM, LSTMT)
1101
            LSTM=LSTMT
1102
            LAST=12
1103
            IF (K+LAST_GT_CNT) LAST=CNT-K
1104
            CALL CLEAR
            WRITE (LISTPRATEORM) HEADG
1105
1106
            LENGTH=1
1107
            CALL SAW(2,1, SYMBOL',6)
1108
            DO 20 J=1, LAST
1109
            PAGE(10*J+ 5,2)=SYM(K+J)
         20 CALL SAW (1, 2+10+J, TDENT(1,K+J),5)
1110
1111
         25 IF (NOTEQ(STM, 1) 1,1)) GO TO 31
1112
         30 CALL OUTPUT (LENGTH)
1113
            60 TO 10
         31 IF (NOTER(STM, 'OXID', 4)) 60 TO 70
1114
1115 C---- WRITE THE OXIDES \star \star \star
1116
            I=INDEX(STM,',',LSTM)
1117
            IF (I.EG.O) STM(1)=RPAREN
1118
            LSTM=LSTM-I
1119
            CALL MOVE (STM(I + 1), STM, LSTM)
1120
            LENGTH=LENGTH+2
1121
            DO 50 L=1, NOX
1122
            I=ORDER(L)
1123
            DO 51 N=1, CNT
1124
            IF(ABS(VALUES(I,N)) .GT. 1.DE-5) GO TO 52
1125
        51 CONTINUE
1126
            GO TO 50°
1127
         52 LENGTH=LENGTH+1
1128
            CALL SAW (LENGTH, 1, NAMES (1, I), 5)
1129
            DO 40 J=1, LAST
1130
            Z=VALUES(I,K+J)
1131
            IF(ABS(7) .LT. 1.0E-5) GO TO 40
1132
            CALL RSW (LENGTH, 2 + 10 * J, Z, '(F5, 2)', 5)
1133
        40 CONTINUE
         50 CONTINUE
1134
1135
            IF (CONVTD) GO TO 25
1136
            LENGTH=LENGTH+1
1137
            CALL SAW (LENGTH, 1, TOTAL (-0) 1,9)
1138
            DO 60 J=1, LAST
```

```
1139
         60 CALL RSW (LENGTH, 2+10*J, TOTALS(1,K+J), (F6.2)1,6)
1140
            GO TO 25
1141
         70 CONTINUE
1142
            IF (NOTEQ(STM, 'BART', 4)) GO TO 100
1143 C---- WRITE RARTH'S CATIONS * * * * *
1144
            I = IND FX (STM, ', ', LSTM)
1145
            IF ([.FQ.O) STM(1)=RPAREN
1146
            LSTM=LSTM-I
1147
            CALL MOVE (STM(I + 1), STM, LSTM)
            IF (CONVTD) GO TO 25
1148
1149
            LFNGTH=LENGTH+2
1150
            CALL SAW (LENGTH, 1, 15 HRARTH'S CATIONS, 15)
1151
            DO 90 I=1,21
1152
            DO 71 N=1, CNT
1153
            IF(ABS(BARTHS(I,N)) .GT. 1.0E-5) GO TO 72
1154
        71 CONTINUE
1155
            GO TO 90
        72 LENGTH=LENGTH+1
1156
1157
            CALL SAW (LENGTH, 1, NAMER (1), 4)
1158
            DO 80 J=1, LAST
1159
            7=PARTHS(I,K+J)
1160
            IF (ABS(Z) .LT. 1.05-5) 60 TO 80
1161
            CALL RSW (LENGTH, 2 + 10 + J, Z, '(F6, 2)', 6)
1162
        80 CONTINUE
1163
        90 CONTINUE
1164
            GO TO 25
1165
       100 CONTINUE
            IF (NOTEQ(STM, 'NIGG', 4)) GO TO 130
1166
1167 C---- WRITE NIGGLI VALUES * *
1168
            I = INDEX(STM, ', ', LSTM)
1169
            IF (I.FQ.O) STM(1)=RPAREN
1179
            LSTM=LSTM-I
1171
            CALL MOVF (STM(I + 1),STM,LSTM)
            IF (COMVTD) GO TO 25
1172
1173
            LENGTH=LENGTH+2
1174
            CALL SAW (LENGTH, 1, 'NIGGLI VALUES', 13)
1175
            DO 120 I=1,12
1176
            DO 101 N=1, CNT
            IF (ABS(NIGGLI(I,N)) .GT. 1.0E-5) GO TO 102
1177
1178
       101 CONTINUE
1179
            GO TO 120
1180
       102 LENGTH=LENGTH+1
1181
            CALL SAW (LENGTH, 1, NAMEN(I), 4)
            DO 110 J=1, LAST
1182
1183
            Z=NIGGLI(I,K+J)
1184
            IF (ABS(Z) .LT. 1.0E-5) GO TO 110
1185
            CALL RSW (LENGTH, 2 + 10*1,7,1(F7.2)1,7)
1186
       110 CONTINUE
1187
       120 CONTINUE
1188
            60 TO 25
1189
       130 CONTINUE
1190
            IF (NOTEQ(STM, 'RATI', 4)) 60 TO 160
1191 C--- WRITE THE RATIOS * * *
1192
            I = INDEX(STM, ', ', LSTM)
1193
            IF (I.FQ.O) STM(1) = RPAREN
1194
            LSTM=LSTM-T
1195
            CALL MOVE (STM(I + 1), STM, LSTM)
1196
            IF (CONVID) GO TO 25
1197
            LENGTH=LENGTH+3
1198
```

CALL SAW (LENGTH, 1, 'AL203/SIO2', 10)

```
1199
            00 140 J=1.LAST
1200
            IF (ABS(RATIOS(1,K+J)).LT.1.0F-5) GO TO 140
1201
            CALL PSW (LENGTH, 2+10*J, PATIOS(1,K+J), (F6.3),6)
1202
       140 CONTINUE
1203
            LENGTH=LENGTH+1
1204
            CALL SAW (LENGTH, 1, 'FFO/FE203', 9)
            DO 159 J=1, LAST
1205
1206
            IF (ARS(RATIOS(2,K+J)).LT.1.0F-5) GO TO 150
1207
            CALL RSW (LENGTH, 2+10*J, RATIOS(2,K+J), (F6.3),6)
1208
       150 CONTINUE
1209
            60 TO 25
1210
       160 CONTINUE
1211
            IF( NOTEQ(STM, 'ADJUST', 6) ) GO TO 300
1212 C--- WRITE THE ADJUSTED OXIDES * * * * * *
1213
            I=INDFX(STM, ', ', LSTM)
1214
            IF(I .EQ. \cap) STM(1)=RPAREN
1215
            LSTM=LSTM-I
1216
            CALL MOVE (STM(I+1),STM,LSTM)
1217
            LENGTH=LFNGTH+2
1218
            IF (.NOT.NOH2O) CALL SAW(LENGTH,1, ADJUSTED OXIDES, 15)
1219
            IF (NOH2O) CALL SAW(LENGTH.1. ADJUSTED OXIDES - H20 FREE .26)
1220
            00 301 L=1.NOX
1221
            I = ORDER(L)
1222
            DO 302 N=1, CNT
1223
            IF(ABS(ADJUST(I,N)) .GT. 1.0E-5) GO TO 303
1224
       302 CONTINUE
1225
            GO TO 301
1226
       303 LENGTH=LENGTH+1
1227
            CALL SAW(LENGTH, 1, NAMES(1, I), 5)
1228
            DO 304 J=1.LAST
1229
            Z = ADJUST(T_*J+K)
1230
            IF(ABS(Z) .LE. 1.0F-5) GO TO 304.
1231
            CALL RSW(LENGTH, 2+10+J,Z,1(F5.2)1,5)
1232
       304 CONTINUE
1233
       301 CONTINUE
1234
            GO TO 25
1235
       300 CONTINUE
1236
            IF (NOTEQ(STM; 'D.I.',4)) 60 TO 180
1237 C---- WPITE THORNTON AND TUTTLE'S DIFFERENTIATION INDEX \star \star
            I = INDEX (STM, 1, 1, LSTM)
1238
1239
            IF (I.FQ.O) STM(1)=RPAREN
1240
            LSTM=LSTM-I
1241
            CALL MOVE (STM(I + 1), STM, LSTM)
1242
            IF (CONVID) GO TO 25
1243
            LENGTH=LENGTH+3
1244
            CALL SAW (LENGTH, 1, D.I. 1,4)
1245
            DO 179 J=1, LAST
1246
            IF (ABS(TTDI(K+J)).LT.1.0E-5) GO TO 170
1247
            CALL RSW (LENGTH, 2+10+J,TTDI(K+J), (F6.3) 1,6)
1248
       170 CONTINUE
1249
            60 TO 25
1250
       180 CONTINUE
1251
            IF (NOTEQ(STM, 'PART', 4)) GO TO 210
1252 C--- WRITE THE PARTITIONING OF DIA HY AND OL
1253
            I = INDEX (STM, ', ', LSTM)
1254
            IF (I.FQ.O) STM(1)=RPAREN
1255
            LSTM=LSTM-I
1256
            CALL MOVE (STM(I + 1), STM, LSTM)
1257
           LENGTH=LENGTH+2
1258
            00 200 1=56,66
```

```
1259
            DO 181 N=1, CNT
1260
            IF(ABS(VALUES(I,N)) .GT. 1.OF-5) GO TO 182
1261
       181 CONTINUE
1262
            60 TO 200
1263
       182 LENGTH=LENGTH+1
1264
            J=2
            IF(I.EQ.56 .OR. I.EQ.60 .OR. I.FQ.63 .OR. I.EQ.66) J=1
1265
1266
            CALL SAW (LENGTH, J, NAMES (1, I), 5)
1267
            DO 190 J=1.LAST
1268
            Z=VALUES(I,K+J)
1269
            IF(ABS(Z) .LT. 1.0E-5) GO TO 190
1270
            CALL RSW (LENGTH, 2 + 10+J,7, (F6.3),6)
1271
       190 CONTINUE
1272
       200 CONTINUE
1273
            50 TO 25
1274
       210 CONTINUE
1275
            IF (NOTEQ(STM, 'MINE', 4)) GO TO 250
1276 C---- WRITE THE MINERALS * * * * * * *
1277
            I = INDEX (STM, ', ', LSTM)
1278
            IF (I.FQ.O) STM(1)=RPAREN
1279
           LSTM=LSTM-I
1280
            CALL MOVE (STM(I + 1), STM, LSTM)
1281
           LENGTH=LENGTH+2
1282
            IF (.NOT.NOH20) CALL SAW(LENGTH,1, NORMATIVE MINERALS 18)
1283
            IF (NOH2O) CALL SAW(LENGTH, 1, NORMATIVE MINERALS - H2O, FREE 1, 29)
1284
            DO 230 1=22,55
            00 211 N=1, CNT
1285
1286
            IF (ABS(VALUES(I,N)) .GT. 1.0E-5) GO TO 212
1287
       211 CONTINUE
1288
            GO TO 230
1289
       212 LENGTH=LENGTH+1
1290
            CALL SAW (LENGTH, 1, NAMES (1, I), 5)
            DO 220 J=1, LAST
1291
1292
            Z=VALUES(I,K+J)
1293
            IF(ABS(Z) .LT. 1.0E-5) GO TO 220
1294
            CALL RSW (LENGTH, 2 + 10*J,7, (F6.3) 1,6)
1295
       220 CONTINUE
1296
       230 CONTINUE
1297
            IF (CONVID) GO TO 25
1298
            LENGTH=LFNGTH+1
1299
            CALL SAW (LENGTH, 1, 'TOTAL', 5)
1300
            DO 240 J=1, LAST
1301
            IF (ABS(TOTALS(2,K+J)).LT.1.0E-5) GO TO 240
1302
            CALL RSW (LENGTH, 2+10*J, TOTALS(2,K+J), (F7.3),7)
1303
       240 CONTINUE
1304
            LENGTH=LENGTH+1
1305
            CALL SAW(LENGTH, 2, 'SALIC', 5)
            DO 241 J=1, LAST
1306
1307
            IF (ABS(TYPES(1,K+J)).LT.1.0E-5) GO TO 241
1308
            CALL PSW(LENGTH, 2+10+J,TYPES(1,K+J), (F7.3),7)
1309
       241 CONTINUE
1317
            LENGTH=LENGTH+1
1311
            CALL SAW (LENGTH, 2, 'FFMIC', 5)
1312
            DO 242 J=1, LAST
1313
            IF (ABS(TYPES(2,K+J)).LT.1.0E-5) GO TO 242
1314
            CALL RSM(LENGTH, 2+10*J,TYPES(2,K+J), (F7,3)1,7)
1315
       242 CONTINUE
1316
            GO TO 25
1317
       250 CONTINUE
```

IF (NOTEQ (STM, 'USER', 4)) GO TO 280

1318

```
1319 C--- WRITE THE USER DEFINED VARIABLES * *
1320
            I = INDEX (STM, ', ', LSTM)
            IF(I .FQ. 0) STM(1)=RPAREN
1321
1322
            LSTM=LSTM-I
1323
            CALL MOVE (STM (I+1), STM, LSTM)
1324
            IF(NUM .LE. 66) GO TO 25
            LENGTH=LENGTH+3
1325
1326
            CALL SAW(LENGTH, 1, "USER DEFINED VARIABLES", 22)
1327
            DO 272 I=67, NUM
            DO 273 N=1,CNT
1328
            IF(ARS(VALUES(I,N)) .GT. 1.0E-5) GO TO 274
1329
1330
       273 CONTINUE
1331
            GO TO 272
1332
       274 LENGTH=LENGTH+1
1333
            CALL SAW(LENGTH, 1, NAMES (1, I), 8)
1334
            DO 271 J=1, LAST
1335
            Z=VALUFS(I,K+J)
            IF (A9S(Z) .LT. 1.E-5) GO TO 271
1336
            CALL RSW(LENGTH, 2+10+J,Z,1(F7.3)1,7)
1337
1338
        271 CONTINUE
1339
        272 CONTINUE
            60 TO 25
1340
        280 CONTINUE
1341
            WRITE (LISTERR, 270) (STM(I), I=1, LSTM)
1342
1343
            WRITE (LISTTY, 279) (STM(I), I=1, LSTM)
            I=INDEX(STM, 1, 1, LSTM)
1344
1345
            IF (I.EQ.O) GO TO 33
1346
            LSTM=LSTM-I
1347
            CALL MOVE (STM(I + 1), STM, LSTM)
1348
            GO TO 25
        270 FORMAT (/ FIRST WORD ILLEGAL IN 1,80A1)
1349
1350
            END
                                                      Function conv
1351
            FUNCTION CONV (A,N1,N2,F,ERR)
1352
            INTEGER A(1), D.E.DIGITS(12), CHARS(17), CODES(17)
1353
            LOGICAL ERRACALLED
            DATA DIGITS/'0','1','2','3','4','5','6','7','8','9','_',' '/,
1354
1355
           1 CALLED/.FALSE./
1356
            IF (CALLED) GO TO 5
1357
            CALLED=.TRUE.
1358
            CALL INIT (CHARS, CODES, 17, DIGITS, 12)
1359
          5 VALUE=0.0
1360
            n=E
1361
            FRP=. FALSE.
1362
            DO 20 (=N1.N2
1363
            CALL FIND(840,A(I),INDEX,CHARS,CODES,17)
1364
            TF (INDEX-11) 14,10,12
1365
         10 D=1-N2
            60 TO 20
1366
1367
         12 INDEX=1
1368
         14 VALUE=10. *VALUE+INDEX-1.
1369
         20 CONTINUE
1370
         30 CONV=VALUE * 10 - 0 * * D
            RETURN
1371
1372
         40 FRR= TRUE.
1373
            VALUE = 0.0
1374
            60 TO 30
```

END

Function index

```
1376
            FUNCTION INDEX (STRING, CHAR, N)
1377
            INTEGER STRING(N), CHAR(1), TANK
1378
            DECODE (CHAR, 5) TANK
         5 FORMAT (A1)
1379
1380
           IF (N.LT.O) GO TO 30
1381
            DO 10 I=1.N
            IF (STRING(I).EQ.TANK) GO TO 20
1382
1383
        10 CONTINUE
1384
           1=0
        20 INDEX=I
1385
            RETURN
1386
1387
        30 N=-N
1388
            DO 40 II=1,N
1389
            I = N+1-II
            IF (STRING(I).EQ.TANK) GO TO 50
1390
1391
        40 CONTINUE
1392
            I = 0
1393
         50 INDEX=I
1394
            RETURN
1395
            END
```

Subroutine move

```
1396 SUBROUTINE MOVE (A,B,N)
1397 INTEGER A(1),B(1)
1398 DO 10 I=1,N
1399 10 B(I)=A(I)
1400 RETURN
1401 END
```

Function noteq

```
LOGICAL FUNCTION NOTEQ(A,R,N)
1402
           INTEGER A(1),B(R),TANK(30)
1403
           DECODE (B,5) (TANK(I), I=1,N)
1404
         5 FORMAT(3041)
1405
           00 10 I=1.N
1406
           IF (A(I).NE.TANK(I)) GO TO 37
1407
1408
        10 CONTINUE
1409
           NOTEQ=.FALSE.
1410
        20 PETURN
1411
        30 NOTFO=.TRUE.
1412
           PETURN
1413
           END
```

Subroutine prnt

```
SUBROUTINE PRNT (X,Y,SYM,CNT,F1,E2,LE1,LE2,STAND,PRNTFR,SIZE)
1414
1415
            LOGICAL PRNTER, STAND
1416
            INTEGER SYM(1), E1(LE1), E2(LE2), CNT
1417
            DIMENSION X(1),Y(1)
1418
            IF (PRNTER) GO TO 5
1419
            I = -1
1420
            IF(STAND) I=1
1421
            CALL SCALE(X,10.0,CNT,I)
1422
            XMIN=X(CNT+1)
1423
            XMAX = X(CNT+2)
1424
            CALL SCALE (Y.8.0, CNT, 1)
1425
            YMIN=Y(CNT+1)
1426
            YMAX=Y(CNT+2)
1427
            GO TO 40
1428
          5 \times MAX = X(1)
1429
            XMIN=XMAX
1430
            YM\Delta X = Y(1)
1431
            YMIN=YMAX
1432
            DO 10 I=2, CNT
1433
            XT = X(I)
1434
            YT=Y(I)
1435
            IF (XT.LT.XMIN) XMIN=XT
1436
            IF (XT.GT.XMAX) XMAX=XT
1437
            IF (YT_LT_YMIN) YMIN=YT
1438
            IF (YT.GT.YMAX) YMAX=YT
1439
         10 CONTINUE
         30 IF (STAND) GO TO 40
1440
1441
            XT = XMAX
1442
            XMAX = XMIN
1443
            XMTN=XT
1444
         40 CALL PLOT2 (XMAX, XMIN, YMAX, YMIN, PRNTER, SIZE)
1445
            DO 50 I=1.CNT
1446
         50 CALL PLOTS (SYM(I),X(I),Y(I))
            CALL PLOT4 (LEZ,EZ,LE1,E1)
1447
1448
            RETURN
1449
            END
```

```
SUBROUTINE TRIANG(IDENT, X, Y, CNT, LE1, LE2, LE3, SYM, E1, E2, E3,
1450
1451
           X PRNTER SIZE)
1452
            EXTERNAL SAW (descriptors)
1453
            COMMON /UNITS/ HEADG, TFORM, INPUT, LISTPR, LISTTY, LISTERR
1454
            COMMON /BULKSTOR/ PAGE, RASSYM
1455
            DIMENSION X(1),Y(1)
1456
            INTEGER E1(LE1), E2(LE2), SYM(1), STAR, BLNK, MORE(2), CNT, IDENT(2,99),
           1 BAD(2,36),E3(1), 7ERO, USCORE, HEADG(92), TFORM(4), PAD(2),
1457
1458
           2 PE1(15), PE2(15), PE3(15), PAGE(132, 180)
            LOGICAL PRNTER, MOD5, UNDERS(51)
1459
            DATA BLNK, 7 ERO, STAR, USCORF, MORE/ 1, 1+1, 1-1, 1-1, 1+MOR', E'/
1460
1461
            IF (PRNTER) GO TO 70
1462 C--- CONSTRUCT TRIANGLE ON CALCOMP PLOTTER
1463
            CALL PACK (E1, DE1, LE1)
            CALL PACK(E2, PE2, LE2)
1464
1465
            CALL PACK(F3, PE3, LE3)
1466
            X1=-0.12*LE2
            CALL SYMBOL (X1,-0.3,0.21,PE2,0.0,LE2)
1467
1468
            CALL SIDE (0.0.0.0.0.0.0)
1469
            X1 = 9.08 - 0.12 + LE3
1470
            CALL SYMBOL (X1,-0.3,0.21,PE3,0.0,LE3)
            CALL SIDE (120.0,9.08,0.0)
1471
1472
            X1=4.54-0.12*LF1
            CALL SYMBOL (X1,7.96,0.21,PE1,0.0,LE1)
1473
            CALL SIDE (-120.0,4.54,7.86)
1474
1475 C---- PLOT POINTS
1476
            DO 60 I=1, CNT
1477
            Y1=7.864E-2*Y(I)
1478
            X1=9.08E-2*X(T)+Y1/1.7321
1470
            TE (X1.NE.D.O.OR.Y1.NE.O.D) CALL SYMBOL (X1-0.05,Y1-0.07,0.14/SI7E
1480
           X = SYM(I) = 0.0 = 1
1481
         60 CONTINUE
1482
            CALL PLOT (15.0,0.0,-3)
1483
            RETURN
1484 C---- SUPERIMPOSE TRIANGLE ONTO THE PLOTTING SURFACE PAGE(,).
1435
         70 DO 100 I=2,50
            LF=51-!
1486
1487
            00 80 J=1.LF
1488
         80 PAGE(J,I)=BLNK
            LF=LF+1
1489
1490
            PAGE(LF,I)=STAR
1491
            MOD5 = MOD(I-1.5) = EQ.0
1492
            IF (MOD5) PAGE(LF,I)=ZERO
1493
            M = 2 * 1 - 3
            DO 90 J=1,M
1494
1495
            LF=LF+1
1496
         90 PAGE(LF, I) =BLNK
1497
            LF=LF+1
            PAGE(LF,I)=STAR
1498
1499
            IF (MOD5) PAGE(LF,I)=7ERO
1500
            LF=LF+1
            DO 100 J=LF,101
1501
1502
        100 PAGE(J,I)=3LNK
1503
            no 110 J=1,101
            PAGE (J.51) =BLNK
1504
1505
        110 PAGE (J.1) = BLNK
1506
            PAGE (1,51) = STAR
1507
            PAGE (51,1) = STAR
```

```
- 1508
             00 120 J=3,99,2
 1509
             PAGE (J.51) = STAR
         120 IF (MOD(J,10)_EQ.1) PAGE(J,51)=7ERO
 1510
 1511
             PAGE(101,51)=STAR
 1512
             K = 0
 1513
              DO 121 J=52,102
 1514
             UNDERS(J-51) = FALSE
 1515
              DO 121 I=1,101
 1516
         121 PAGE(I,J)=BLNK
 1517 C--- START PLOTTING THE POINTS.
              DO 150 I=1, CNT
 1518
 1519
             XT = X(I)
 1520
              YT=Y(I)
              IF (XT.EQ.O.O.AND.YT.EQ.O.O) GO TO 150
 1521
 1522
              J = 0.5 \times YT + 0.5
 1523
              J = 51 - J
 1524
              IX = XT + 0.5 \times YT + 1.5
              IF (XT.LT.1.0.0R.YT.LT.1.0.0R.XT+YT.GT.99.0) GO TO 140
 1525
 1526
              NPT=PAGE(IX.J)
              IF (NPT_EQ_BLNK) GO TO 140
 1527
 1528
              IF(NPT .EQ. STAR) GO TO 149
              IF(NPT .EQ. USCORE) GO TO 140
 1529
 1530
              K=K+1
 1531
              UNDERS(J)=.TRUE.
 1532
              PAGE(IX,J+51)=USCORE
 1533
              IF (K.LE.35) GO TO 130
 1534
             K = 36
 1535
              BAD(1,36) = MORE(1)
 1536
              BAD(2.36) = MORE(2)
              60 TO 150
 1537
 1538
         130 BAD(1,K)=IDENT(1,I)
 1539
              BAD(2 \times K) = IDENT(2 \times I)
              GO TO 150
 1540
 1541
         140 PAGE(IX,J)=SYM(I)
         150 CONTINUE
 1542
              IF (K.EQ.O) GO TO 170
 1543
 1544
              CALL SAW(1,1, THE FOLLOWING POINTS WERE NOT PLOTTED ,37)
 1545
              CALL SAW(2,1, BECAUSE THEY WOULD HAVE FALLEN ON A',35)
              CALL SAW(3,1, PREVIOUSLY PLOTTED POINT: 1,25)
 1546
              M = 3
 1547
 1548
              00 160 I=1,K
 1549
              J = MOD(I - 1.6)
 1550
              IF (J_EQ_0) M=M+1
 1551
              LF=6*J+1
 1552
         160 CALL SAW(M, LF, BAD(1,1),5)
         170 WRITE (LISTPRATFORM) HEADG
 1553
 1554
              WRITE (LISTPR, 180) (E1(I), I=1, LE1)
 1555
              DO 210 J=1,51
              WRITE (LISTPR, 190) (PAGE (I,J), I=1,101)
 1556
 1557
              IF(UNDERS(J)) WRITE (LISTPR, 201) (PAGE(I, J+51), I=1,101)
 1558
         210 CONTINUE
 1559
              WRITE (LISTPR, 190) (E2(I), I=1, LE2)
 1560
              WPITE (LISTPR, 200) (E3(I), I=1, LE3)
              RETURN
 1561
 1562
         180 FORMAT ( 1,55x,40A1)
 1563
         199 FORMAT ( 1 , 5x, 101A1)
         200 FORMAT ( +1,105x,27A1)
  1564
  1565
         201 FORMAT("+", 5x,101A1)
  1566
                END
```

```
1567
            FUNCTION EVAL (VALUES)
            INTEGER TYPE (41) , TOP
1568
1569
            DIMENSION VALUES(1), STACK(41), POLISH(41)
            COMMON /EVALPR/ TYPE, ICT, POLISH
1570
            COMMON /UNITS/ PAD(98), LISTTY, LISTERR
1571
1572
            I=ICT
1573
            TOP=0
            DO 340 J=1.I
1574
1575
            INDEX=TYPF(J)
1576
            IF(INDEX) 290,285,280
1577
       280 TOP=TOP+1
1578
            STACK (TOP) = VALUES (INDEX)
1579
            GO TO 340
       285 TOP=TOP+1
1580
1581
            STACK (TOP) = POLISH(J)
1582
            GO TO 340
1583
       290 INDEX=5+INDEX
1584
            IF(INDEX .EQ. 0) GO TO 295
1585
            VT=STACK(TOP)
1586
            TOP=TOP-1
1587
            GO TO (310,300,330,320), INDEX
       295 STACK(TOP) =- STACK(TOP)
1588
1589
            GO TO 340
1590
       300 STACK(TOP)=STACK(TOP)*VT
1591
            GO TO 340
1592
        310 IF(VT .NE. 0.0) GO TO 315
1593
            WRITE (LISTTY, 312)
1594
            WRITE (LISTERR, 312)
        312 FORMAT(/ DIVIDE BY ZERO ATTEMPTED, HENCE')
1595
1596
            GO TO 360
1597
       315 STACK (TOP) = STACK (TOP) / VT
1598
            60 TO 340
1599
        320 STACK (TOP) = STACK (TOP) +VT
1600
            GO TO 340
1601
        330 STACK (TOP) = STACK (TOP) - VT
1602
        340 CONTINUE
            IF (TOP.NF.1) 50 TO 360
1603
            EVAL=STACK(1)
1604
1605
       350 RETURN
1606
        360 EVAL=0.0
            RETURN
1607
1608
            END
```

Subroutine pack

```
1609
           SUPROUTINE PACK (FROM, TO, LENGTH)
1610
           INTEGER FROM(LENGTH), TO(LENGTH), WORD(1)
1611
           IPT=0
1612
           N=LENGTH/4
1613
           LAST=LFNGTH-4*N
1614
           IF (N.EQ.O) GO TO 10
1615
           00 5 J=1.N
           ENCODE (WORD, 1) (FROM(IPT+I), I=1,4)
1616
1617
         1 FORMAT(4A1)
1618
           TO(J) = WORD(1)
1619
         5 IPT=IPT+4
1620
        10 IF (LAST.EQ.0) GO TO 20
           WORD(1)=
1621
1622
           ENCODF (WORD,1) (FROM(IPT+I),I=1,LAST)
1623
           TO(N+1)=WORD(1)
        20 RETURN
1624
1625
           END
```

```
1626
            SUPROUTINE PARSE (EXPRILINAMES NO FRRI ISTTYLLISTERR)
1627
            LOGICAL ERRAPOPANUMACALLED
            INTEGER EXPR(1), NAME(R), BLANK, TM(3,9), SYMBOL(44), TOP, ROW, COLUMN, C,
1628
1629
           1ELFMNT,SWITCH,INDFX,TYPF(41),COLS(44),NAMFS(2,81),VAR9LE(2),
1630
          2CHARS (47) . CODES (47)
1631
            COMMON /FVALPR/ TYPE, ICT, POLISH
1632
            DIMENSION POLISH(41), STACK(41)
1633
            DATA TM/12,32,0,81,2*41,0,2*51,0,2*61,0,2*71,101,3*3,92,93
1634
           1,21,27,23,113,32,33/,UNARY,DIV,PROD,DIFF,PLUS/-5.,-4.,-3.,-2.,-1./
            DATA COLS/26*1,11*9,8,3,2,5,4,6,7/,SYMBOL/'A','B','C','D',
1635
           1 'F','F','G','H','I','J','K','L','M','N','O','P','Q','R','S',
1636
           2 171,101,191,181,181,181,121,101,111,121,131,141,151,161,171,
1637
1638
          3 '8','9','-',' ','+','-','*','/','(',')'/,PAREN,CALLED/3.,.FALSE./
           4 , BLANK / 1/
1639
1640 C
            INITIALIZATION
1641
            IF (CALLED) GO TO 20
1642
            CALLED=.TRUE.
1643
            CALL INIT(CHARS, CODES, 47, SYMBOL, 44)
1644
         20 ERR= FALSE.
1645
              ROW=1
1646
              TOP = 0
1647
              1=0
1648
              C = 0
            CONSTRUCT POLISH FORM VIA TRANSITION MATRIX TM
1649 C
        30 C=C+1
1650
1651 C
            ARE THERE MORE CHARACTERS TO PROCESS IN EXPR ?
1652
              IF (C.LF.L) GO TO 50
              IF(ROW_FQ_1) GO TO 460
1653
1654
              IF (POP) GO TO 250
1655
              IF (NUM) GO TO 40
1656
              SWITCH=1
            GO FIND VALUE AND INSERT IN POLISH STRING
1657 C
1658
              60 TO 370
1659
         40 SWITCH=2
1660 C
            GO EVALUATE CONSTANT AND INSERT IN POLISH STRING
1661
              50 TO 420
            GET THE CHARACTER. DETERMINE TASK (JOB) AND NEXT-STATE (ROW).
1662 C
1663
         50 NEXT=EXPR(C)
            CALL FIND ($485, NEXT, J, CHARS, CODES, 47)
1664
            COLUMN=COLS(J)
1665
1666
              ELEMNT=TM(ROW, COLUMN)
1667
              JOB=ELEMNT/10
1668
              ROW=MOD(ELEMNT,10)
1669
              GO TO (60,30,70,130,140,150,160,170,180,230,240), JOS
1670
              60 TO 485
            START AN ITEM
1671 C
1672
         60 NAME(1)=NEXT
1673
              NCHAR=1
1674
              POP= FALSE.
1675
              MUM=.FALSE.
              60 TO 30
1676
1677 C
            ADD CURRENT CHARACTER TO PARTIALLY BUILT ITEM
1678
         70 NCHAR=NCHAR+1
              NAME (NCHAR) = NEXT
1679
1680
              GO TO 30
1681
         80 IF (POP) 60 TO 100
              POP=.TRUE.
1682
1683
              IF (NUM) GO TO 90
```

```
1684
              SWITCH= 3
1685 C
           GO FIND VALUE AND INSERT IN POLISH STRING
1686
              50 TO 370
1687
        90 SWITCH=4
1688 C
            GO EVALUATE CONSTANT AND INSERT IN POLISH STRING
1689
              GO TO 420
1690
       100 IF (TOP-EQ-0) GO TO 120
1691
              IF (CODE.LT.STACK(TOP)) GO TO 120
            SWITCH=5
1692
1693
              VALUF=STACK (TOP)
1694
              INDEX=VALUE
1695
              GO TO 470
1696
       110 TOP=TOP-1
1697
              60 TO 100
1698
       120 TOP=TOP+1
1699
              STACK (TOP) = CODE
1700
              GO TO 30
1701 C
            SET CODE FOR OPERATOR AND GO PROCESS ITEM
1702
       130 CODE=DIFE
1703
              50 TO 80
1704
       140 CODE=PLUS
1705
              60 TO 80
1706
       150 CODE=DIV
1707
              GO TO 80
1708
       160 CODE=PROD
1709
              60 TO 80
       170 CODE=UNARY
1710
1711
              60 TO 120
1712 C
            RIGHT PAREN SENSED. INSERT ITEM IN POLISH AND POP STACK
1713
       180 IF (POP) GO TO 200
1714
              POP= TRUE.
1715
              IF (NUM) GO TO 190
1716
              SWITCH=6
1717 C
            GO FIND VALUE AND INSERT IN POLISH STRING
1718
              50 TO 370
1719
       190 SWITCH=7
            GO EVALUATE CONSTANT AND INSERT IN POLISH STRING
1720 C
1721
              GO TO 420
1722
       200 IF (TOP.EQ.O) GO TO 460
1723
              TE (PAREN.EG.STACK(TOP)) GO TO 220
1724
              SWITCH=8
1725
              VALUE=STACK(TOP)
1726
              INDEX=VALUE
1727
              GO TO 470
1728
       210 TOP=TOP-1
1729
              GO TO 200
1730
       220 TOP=TOP-1
1731
              60 TO 30
1732 C
            LEFT PAREN SENSED. INSERT IN STACK
1733
       230 TOP=TOP+1
1734
              STACK (TOP) = PAREN
1735
              GO TO 30
1736
       240 NAME(1)=NEXT
1737
              NCHAR=1
1738
              NUM=.TRUE.
1739
              POP=.FALSE.
1740
              60 TO 30
1741
        250 IF (TOP.FQ.O) GO TO 510
1742
              SWITCH=9
1743
              VALUE=STACK (TOP)
```

```
1744
              IF(VALUE.EQ.PAREN) GO TO 460
1745
              INDEX=VALUE
1746
              GO TO 470
1747
       260 TOP=TOP-1
1748
              GO TO 250
1749 C
           GET INDEX ASSOCIATED WITH NAME
1750
       370 NCHAR=NCHAR+1
1751
              TE (NCHAR_GT_R) GO TO 390
1752 C
           PAD NAME WITH PLANKS
1753
              DO 380 J=NCHAR,8
1754
       380 NAME(J)=BLANK
1755
       390
              ENCODE (VARBLE, 395) NAME
1756
       395
              FORMAT(8A1)
1757
              DO 400 J=1.N
1758
            IF (VARBLE(1).EQ.NAMES(1,J).AND.VARBLE(2).FQ.NAMES(2,J)) GO TO 410
1759
       400 CONTINUE
              WRITE (LISTTY, 490) VARBLE
1760
              WRITE (LISTERR, 490) VARBLE
1761
1762
              GO TO 460
1763
       410 INDEX=J
1764
              GO TO 470
1765 C
            EVALUATE A CONSTANT
1766
       420 VALUE = CONV(NAME, 1, NCHAR, 0, FRR)
1767
              INDEX=0
1768
              IF (ERR) GO TO 460
1769
       470 I = I + 1
1770
              POLISH(I) = VALUE
1771
              TYPE([)=INDEX
              GO TO (250,250,100,100,110,200,200,210,260), SWITCH
1772
1773
       460 ERR=. TRUE.
1774 C
              PARSE=0.0
1775
       485 WPITE (LISTTY, 480) (EXPR(J), J=1, L)
1776
           WRITE (LISTERR, 480) (EXPR(J), J=1, L)
1777
       510 ICT=I
1778
            RETURN
1779
       480 FORMAT (/' ERPOR IN EXPRESSION ',80A1)
1780
       490 FORMAT (/ UNDEFINED NAME 1,2A4)
1781
              END
```

Subroutine plot?

```
1782
            SUBROUTINE PLOT2(XMAX,XMIN,YMAX,YMIN,WPRNT,SIZE)
1783
            LOGICAL KNHOR, WPLOT, UNDERS(51), WPRNT
1784
            INTEGER LAREL(1), XLAR(1), PLAR(15), PXLAR(15), CH, WL, US CORE, HEADG,
1785
           1 TEORMAHCABL
1786
            DIMENSION ABNOS (11)
1787
            COMMON /UNITS/ HEADG(92), TFORM(4), INPUT, LISTPR, LISTTY, LISTERR
1788
            COMMON /BULKSTOR/ IMAGE(23760), RASSYM
1789
            COMMON /PLOTS/ XMIN1, YMIN1, DV, DH, WPLOT, SCALE, UNDERS, YMX, ABNOS
1790
            DATA HC, NC, BL, USCORE/ !-!, !+!, ! ', !_!/
1791
            WPLOT=WPRNT
1792
            IF (WPRNT) GO TO 130
1793
            SCALE=SIZE
1794
               XMIN1=XMIN
1795
               YMIN1=YMIN
1796
               DV = XMAX
1797
               DH=YMAX
1798
               IF(ABS(DV-XMIN1).LT.1.E-6) DV=XMIN1+1.0
1799
               IF (ABS (DH-YMIN1).LT.1.E-6) DH=YMIN1+1.0
1800
              RETURN
1801
        130 YMX=YMAX
1802
            DV = (XMAX - XMIN) / 100.
1803
               DH=(YMAX-YMIN)/50.
1804
              DO 140 I=1,11
1805
        140
              ABNOS(I)=(XMIN+FLOAT((I-1)*10)*DV)
1806
              00 150 I=1,10302
1807
        150 IMAGE(I)=BL
1808
              no 180 I=1,51
              UNDERS(I)=.TRUE.
1809
1810
               12=1 * 101
1811
              11=12-100
1812
              KNHOR=MOD(I-1,10).NE.0
1813
            IF (KNHOR) GO TO 170
1814
               DO 160 J=11,12
1815
        160 \text{ IMAGE(J)} = \text{HC}
1816
        170 CONTINUE
1817
               180 J=11,12,10
1818
               IF (KNHOR) GO TO 180
1819
               IMAGE(J)=NC
1820
        180 CONTINUE
1821
              XMIN1=XMIN-DV/2.
1822
               YMIN1=YMIN-DH/2.
1823
               RETURN
1824
            ENTRY PLOT3(CH,X,Y)
1825
               DUM1 = (X - XMIN1)/DV
1826
               DUM > = (Y - YMIN1) / DH
1827
               IF (WPLOT) GO TO 190
1828
               CALL SYMBOL (DUM1-0.05, DUM2-0.07, 0.14/SCALE, CH, 0.0, 1)
1829
               RETURN
1830
        190 J = (51 - INT(DUM2) - 1) + 191 + INT(DUM1) + 1
1231
              MPT = IMAGE(J)
1932
               IF(NPT .FQ. RL) GO TO 191
            IF(NPT.EQ.HC) GO TO 191
1833
1834
              IF(NPT .EQ. NC) GO TO 191
1835
               I = (J-1)/101+1
1836
              UNDERS(I) = . FALSE.
1837
               IMAGE(J+S151) =USCORE
1838
        191 IMAGE(J)=CH
```

108

1239

RETURN

```
1840
            ENTRY PLOT4 (NL, LARFL, NXL, XLAR)
1841
              IF (WPLOT) GO TO 200
1847
            CALL PACK(LAREL, PLAR, NL)
1843
            CALL PACK(XLAP, PXLAP, NXL)
1844
              CALL AXIS (0.0,0.0,PLAR,NL,7.0,90.0,YMIN1,DH)
1845
              CALL AXIS (0.0,0.0,PXLAR,-NXL,10.0,0.0,NxMIN1,DV)
1846
            CALL PLOT(15.0,0.0,-3)
1847
              RETURN
1848
       200 WRITE (LISTPRATFORM) HEADG
1849
              DO 220 I=1,51
1850
              WL=BL
1851
              IF (I.LE.NL) WL=LABEL(I)
1852
              12 = 1 \times 101
1853
              11=12-100
1854
              IF (MOD(I-1,10),ER.0) GO TO 210
1855
              WRITE (LISTPR, 205) WL, (IMAGE(J), J=11, 12)
1856
       205
              FORMAT (1x,A1,9x,121A1)
1857
              GO TO 221
1858
       210 CONTINUE
1859
              ORDNO=(YMX-FLOAT(I-1)*DH)
1860
              WRITE (LISTPR, 215) WL, ORDNO, (IMAGE(J), J=11, 12)
1861
       215
              FORMAT (1X, A1, F8, 3, 1X, 121A1)
1862
       221 IF (UNDERS(I)) GO TO 220
1863
              I1 = I1 + 5151
1864
              12=12+5151
              WRITE (LISTPR, 222) (IMAGE(J), J=11, 12)
1865
1866
       222 FORMAT('+',10x,121A1)
1867
       220 CONTINUE
1868
              WRITE (LISTPR, 225) (ABNOS(J), J=1,11)
1869
       225
              FORMAT (1HOF14.3,10F10.3)
1870
              WRITE (LISTPR, 240) (XLAB(J), J=1, NXL)
1871
              RETURN
1872
        240 FORMAT (' ',50x,7041//)
1873
              END
                                                     Subroutine clear
1874
            SUBROUTINE CLEAR
1875
            INTEGER COLUMN, WIDTH, SIZE, AREA (4), BLANK, PAD (86)
1876
             INTEGER PAGE(132,180), FORMAT(1), STRING(33)
            COMMON /UNITS/ HEADG(92), TFORM(4), INPUT, LISTPR, LISTTY, LISTERR
1877
            COMMON /BULKSTOR/ PAGE, RASSYM
1878
            DATA BLANK / 1/
1879
            DO 10 J=1,180
1880
            DO 10 J=1,132
1881
         19 PAGE(I,J)=PLANK
1882
1883
            GO TO 50
             ENTRY RSW(LINE, COLUMN, RS, FORMAT, SIZE)
1884
1885
             ENCODE (AREA, FORMAT) RS
             DFCODF(AREA, 15) (PAGE(COLUMN+I-1, LINE), I=1, SIZE)
1886
         15 FORMAT(132A1)
1887
1888
             GO TO 50
1889
             ENTRY SAW(LINE, COLUMN, STRING, SIZE)
             DECODE(STRING, 15) (PAGE(COLUMN+I-1, LINE), I=1, SIZE)
1890
             60 TO 50
1891
1892
             ENTRY OUTPUT (LENGTH)
             DO 30 J=1, LENGTH
1893
         30 WPITE (LISTPR, 40) (PAGE(I, J), I=1, 132)
1894
1895
         40 FORMAT( 1,132A1)
         50 PETHRN
 1896
                                        109
```

END

Subroutine init

```
1899
            INTEGER FILLER, CHARS (1), CODES (1), SYMBOL (1)
1900
            DATA FILLER/'VOID'/
1901
            DO 10 I=1.M
         10 CHARS(I)=FILLER
1902
1903
            DO 40 ICODE=1.N
1904
            TCHAR=SYMBOL(ICODE)
1905
            L=IABS(ICHAR)
1906
            J = L/M
1907
            I=L-M+J .
            IF (MOD(J,M).EQ.0) J=1
1908
1909
         20 IF (CHARS(I+1).EQ.FILLER) GO TO 30
1910
            I = MOD(J+J,M)
            GO TO 20
1911
         30 CHARS(I+1)=ICHAR
1912
1913
         40 CODES(J+1)=ICODE
1914
            RETURN
1915
            END
                                                     Subroutine find
1916
            SUBROUTINE FIND(*, ISYMBL, KODE, CHARS, CODES, M)
1917
            INTEGER CHARS(1), CODES(1), FILLER
1918
            DATA FILLER/'VOID'/
1919
            L=IABS(ISYMBL)
1920
            J=L/M
1921
            I = L - M + J
1022
            IF (MOD(J,M),EQ.0) J=1
1923
         50 ICHAR=CHAPS(I+1)
1924
            IF (ICHAR.EQ.ISYMBL) GO TO 60
1925
            IF (ICHAR. EQ. FILLER) RETURN 1
1926
            I = MOD(I + J_M)
1927
            GO TO 50
1928
         60 KODE=CODES(I+1)
1929
            RETURN
1930
            END
                                                     Subroutine side
1931
            SUPPOUTINE SIDE (T.X.Y)
1932
            CT = COS(1.74533E - 2 \times T)
1933
            ST=SIN(1.74533E-2*T)
1934
            00 10 1=0,9
1935
            AL=0.903*I
1936
            BL=AL+0.908
1937
            S=H1
```

SUBROUTINE INIT (CHARS, CODES, M. SYMBOL, N)

1898

1938 1939

1940

1941

1942 1943

1944

1945

1946

1947

IF (I.NF.9) CALL PLOT(X+BL*CT-0.086603*ST+0.05*CT,

CALL PLOT (X+AL*CT-0.086603*ST-0.05*CT,Y+AL*ST+0.086603*CT-0.05*ST,

IF (I.E9.0) IH=3

CALL PLOT(X+AL*CT,Y+AL*ST,IH)
CALL PLOT(X+BL*CT,Y+RL*ST,2)

X Y+BL *ST+0.05*ST+0.086603*CT,2)

X 3)

10 CONTINUE

FND

RETURN

```
1948
           SUBROUTINE FILES (IN, N)
1949
           FXTFRNAL SCC(descriptors), DELETE(descriptors)
1950
           INTEGER ANSWER, LINES (33), HEADG, TEORM
1951
           CHARACTER TAPEPT * 6, INFILE * 32, PRFILE * 32, BLANK * 32
1952
           COMMON /UNITS/ HEADG(92), TEORM(4), INPUT, LISTPR, LISTTY, LISTERR
1953
           DATA BLANK/" "/
1954
           GO TO (30,10,50,70,40,90,100,140),N
1955 C--- OPEN INPUT FILE.
1956
        10 PRINT 15
1957
        15 FORMAT (/'Enter Input File: ',8)
1958
           READ 20, INFILE
1959
        20 FORMAT (A32)
1960
           IF (INFILE_FQ_BLANK) STOP
           OPEN (INPUT, FILE=INFILE, FORM="formatted", MODE="in", ERR=18)
1961
1962
           RETURN
1963
        18 PRINT 19, INFILE
1964
        19 FORMAT (/'Cannot attach to file ',a32)
1965
           CLOSE (INPUT)
1966
           GO TO 10
1967 C---- OPEN PRINTER FILE.
1968
        30 PRINT 35
1060
        35 FORMAT (/'Enter Printer File: ',%)
1970
           READ 20, PRFILE
1971
           OPFN (LISTPR, FILE=PPFILE, FORM="formatted", CARRIAGE=. TRUE.,
1972
          1 DEFER=.TRUE.,MODE="out")
1973
           RETURN
1974 C---- CLOSE FILE.
        40 CLOSE (IN)
1975
1976
           RETHRN
1977 C--- OPEN TAPE UNIT FOR CALCOMP PLOT, IF NEEDED.
1978
        50 PRINT 55
1079
        55 FORMAT (/'Is any portion of this run going to plot tabe ? '>$)
1980
           READ 21, ANSWER
1981
        21 FORMAT(A3)
1982
            IF (ANSWER.NE."yes ") RETURN
1983
           PRINT 23
        23 FORMAT (/*Finter 6-character plot tape number : *,$)
1984
1985
            PEAD 22, TAPEPT
1986
        22 FORMAT(A6)
1987
           CALL SCC('-un','15','-tp','-nm',TAPEPT)
1988
            RFTURN
1989 C--- RESET STATUS OF CALCOMP.
        70 IF (ANSWER.ER."yes ") CALL SCC('-reset')
1990
1991
            RETURN
1992 C--- OPFN SCRATCH FILE FOR LISTING ERRORS.
        90 OPEN (LISTERR, FILE="ERRORS.list", FORM="formatted", MODE="inout")
1993
1994
            RETURN
1995 C---- COPY FRRORS FROM SCRATCH FILE TO PRINTER FILE.
       100 REWIND LISTERR
1996
1997
            ISW=0
1998
       110 READ (LISTERR, 120, END=130) LINES
1999
       120 FORMAT (33A4)
2000
            IF (ISW.NE.O) GO TO 125
2001
            ISW=1
            WRITE (LISTPR, TFORM) HEADG
5005
2003
            WRITE (LISTPR, 126)
2004
       126 FORMAT (//5x, 'ERROR MESSAGES AND RUN CONDITIONS'//)
       125 WRITE (LISTPR, 120) LINES
2005
```

```
2006 GO TO 110
2007 130 REWIND LISTERR
2008 RETURN
2009 C---- CLOSE AND DELETE SCRATCH FILE.
2010 140 CLOSE (LISTERR)
2011 CALL DELETE ("ERRORS.list")
2012 RETURN
2013 END
```